

Fast Image Encryption with a Cellular
Automata
Shin Lee
Western Reserve Academy

Abstract:

Due to the improvements of cryptology based off of the RSA encryption algorithm, modern society can

communicate with each other safely online. However, when transmitting heavy data such as photos or videos,

the RSA algorithm will be overwhelmed with the overhead of computing huge prime computations. In this

paper, I have developed a methodology to transmit images securely like the RSA, but with faster processing

time. To achieve this, I have utilized 2D Cellular Automata and its characteristic that when invertible rules

are applied they can be used to encrypt and decrypt data. An experiment of this algorithm conducted at the

end resulted in more than ten times faster processing time for encryption/decryption than the RSA.

1. Introduction

Motivation

In line with my interest in algorithms, I was

watching a Youtube video on algorithms that

changed the world, in which the RSA algorithm

was introduced. I was surprised how such a

simple mathematical concept could be applied to

enable people around the globe to safely

communicate with each other.

Intrigued by the concept, I was motivated to come

up with a new method that also employs this

public key encryption system. The RSA

encryption algorithm uses huge prime numbers to

generate a public key and a private key, which is

complicated and relatively slow. This makes RSA

unfit for processes with large amounts of data,

such as transmitting pictures or videos.

In line with my interest in algorithms, I was

watching a youtube video about algorithms that

changed the world, where I found out about the

RSA algorithm. How the RSA algorithm enabled

a very secure interaction with only a simple

mathematical base was truly fascinating. It

inspired me to come up with a new encrypting

system with the same public-private key system

used in the RSA algorithm. I eventually came up

with cellular automata, a concept I learned during

an art project before, to try to come up with an

algorithm to encode an image. Interestingly,

cellular automata can encode and decode very fast

when given a rule to start with, and is especially

useful in encrypting data that has pixels such as

image files. In this paper, I created an image

encryption algorithm that utilizes cellular

automata to fastly and robustly encrypt data.

Design of the Paper

This paper will discuss various encrypting logics

and the RSA which utilizes a public key system.

Then, it will contemplate on basic Cellular

Automata and their characteristics. Using this

knowledge, in Part 3 I will prove several

characteristics that are essential in encrypting

images, and come up with a custom algorithm and

demonstrate the encrypting and decrypting

operations on images.

Background Knowledge

RSA Algorithm [1]

The RSA Algorithm is one of the security

measures taken in order to prevent unintended

decryption from happening. It utilizes the fact

that operations to find a prime number is one of

the most time-consuming ones, and also using

the fact that prime numbers have a unique

characteristic that will be described below that

can be used to make a secure method to transfer

information.

The RSA Algorithm works as such:

1. Unique prime numbers p and q are chosen, and

N=pq is made public

2. Assuming that there is no common factor

between (p-1) and (q-1), a number e is chosen

in the range from 1 to min(p-1, q-1). The

number e is made public.

3. A private key d is derived from the formula ed =

1 mod (p-1)(q-1).

After these steps, a public key pair (N,e) and

private key d is used to encrypt/decrypt data.

When sending a message, we utilize the public

key to encrypt it. Suppose that we want to send

a message that has been numericized as 𝑀. Then,

the encrypted result will be M
𝑒

(mod n)

When the receiver receives the message, then the

person can decrypt using the private key, that

𝑀𝑒𝑑 = 𝑚 (𝑚𝑜𝑑 𝑝𝑞)

The RSA’s method of encryption is a good

example of asymmetric encryption, in which a

public key, used for encrypting, and private key,

used for decrypting, are different. This asymmetric

encryption is very safe in terms of communication,

as anyone can encrypt a message but only the

receiver with the private key can decrypt them. [2]

Figure 1: RSA Encryption Algorithm’s utilization of public key and private key

Cellular automata [3]

Cellular Automata is a sort of grid that consists of

numerous cells. Each cell has a value of either 0 or

1 (white or black), and when given an initial state,

their next state is determined through a set rule.

Each rule of cellular automation can be represented

in a decimal number, where we convert it to binary

to determine the next status of each instance based

on its neighboring instances.

The value of the cell (i, j) is determined by the

values of the cells (i-1, j-1), (i-1, j), (i-1, j+1) For

example, the figure below is depicting the logic

of rule 30. If rule 30 is converted into a binary

number, it becomes 00011110. Each digit in that

number represents the outcome when the

previous cells are each 000, 001, 010, 001, 100,

101, 110, 111. When this is repeatedly applied

to the first row, we get this beautiful pattern as

depicted below.

Figure 2: Depiction of rule 30 on Cellular Automata

and its change based on initial state

Due to its unpredictable nature, it is often used

in cryptography and generating random

numbers. In our paper, we are also going to use

this feature to encrypt a selected image data’s

individual pixels.In this process, we utilized the

2D Cellular Automata, where if we apply

mutually invertible rules, we can encrypt and

decrypt data. In addition, to prevent attacks, we

have come up with a random sequence to apply

CA multiple times instead of a singular

encryption to increase security.

3. Experiments

3.1 Finding Invertible CAs

Regardless of which encoding method, there

must be a way to decode the encrypted data.

Thus, a function that converts a message into an

encrypted one must be invertible. Therefore, we

must first find out which CAs are invertible.

Thankfully, there are only 256 rules that are

present in CAs, so we can check if each rule is

invertible through a brute force algorithm. The

code to do so is the one below.

Figure 3: Bruteforce algorithm to find invertible

rules

Through this experiment, I found six invertible rule

sets. They were {15,85}, {51,51}, {85, 15},

{170,240}, {204,204}, and {240, 170}. When

applying this to use in production, we might want

to go further than just 256 rules to keep brute

force attacks by hackers.

ruleNumber = 256

for rule1 := 1 ~ 256:

for rule2 := 1 ~ 256:

test := {000, 001, 010, 011, 100, 101, 110, 111}

if applying rule2 after rule1 to test is same with

test:

{rule1, rule2} is an invertible pair

3.2 Encryption

After finding invertible CAs, we have to make a

complicated encryption method based on that. If

we were to just simply apply a few CA rules to

encrypt, hackers would easily grasp our original

image by brute forcing through the possible rule

sets. To prevent this, I came up with an encryption

method involving multiple layers. First, I divided

the images used in the experiment of size 64x64

pixels to 8x8 sized blocks of images. Then, on

those individual blocks, I considered them a 64-

bit string instead of a matrix and applied CA.

However, we are going to use different rules to do

such in each of the blocks. During this process, we

are going to use a randomly picked rule pair that

is invertible to block brute force attacks.

Figure 4: Dividing up 64x64 sized image into

multiple blocks to encrypt

3.3 Decryption

In order to decrypt a given image, we need to find

out which rules were applied in the encryption

process. For that, we need to know how many

rules are there, and which of those invertible rules

were applied on each blocks. In this experiment,

we restricted the rule size to 256 and chose one of

the 6 invertible ruleselts, but when in real

implications, we will need to choose larger limits,

such as 1024 rules, for example. When image is

sent, the sender will transmit a sequence of

numbers that contain information of which rules

were used. This information will be sent using the

RSA algorithm, so it is safe from attack. After all

sequences has been sent, we send the encrypted

image to the receiver. We are not going to use the

RSA algorithm here, because it takes too long to

encrypt larger data like images using RSA. The

receiver can decrypt the image by using the

sequence received beforehand reversely. Thus, we

used RSA’s security but resolved its slow speed by

applying cellular automata in the process. Even if

the hacker intercepts the encrypted message, there

are too many cases to brute force to guess the

sequence (if there are 10 blocks in 256 rule sets,

there are 256^10 cases this is possible), thus

making it safe from attack.

Here are the actual images encrypted and decrypted

in the experiment.

Figure 5: Encrypted image data using CA and RSA

[4]

3.4 Performance

In order to compare the performance, we have

measured the speed of using just RSA versus my

method of utilizing cellular automata on 20

images. Each image was 64x64 pixel sized, and is

a black and white image that has value between

0~255. All models were created using Python, and

the experiment was conducted using a CentOS

Linux machine with an Intel Xeon E5-2680 V3 (@

2.50GHz) Dual-core CPU, paired with 256GB of

memory. The result of the experiment, as shown

below, shows that using cellular automata in the

process makes encryption about ten times faster

than using just RSA.

Figure 6: Comparison between average processing

time of RSA and CA method

4. Conclusion

In this paper, we have come up with a method to

safely transmit data like the RSA algorithm but

with much faster speed. In this process, we

utilized the 2D Cellular Automata, where if we

apply mutually invertible rules, we can encrypt

and decrypt data. In addition, to prevent attacks,

we have come up with a random sequence to

apply CA multiple times instead of a singular

encryption to increase security.

As a result, it has turned out that the method

utilizing CA is ten times faster than just using

RSA in encrypting and decrypting images. This is

because while RSA has to go through heavy

computation using prime numbers, our method

applies Cellular Automata’s rules to encode,

which is relatively simpler. In the future, it would

be a good idea to research about encrypting text

data or bit sequences such as video using the same

concept.

References

[1] Josh Lake, Comparitech, “What is RSA
encryption and how does it work?” URL:
https://www.comparitech.com/blog/informatio
n-security/rsa-encryption/
[2] Margaret Rouse, TechTarger, “RSA algorithm
(Rivest-Shamir-Adleman)”

URL:
https://searchsecurity.techtarget.com/definition/R
SA
[3] Wolfram MathWorld, "Cellular Automaton"

URL:
https://mathworld.wolfram.com/CellularAutomat
on.html
[4] Image of Lena Forsén
URL:
https://sipi.usc.edu/database/database.php?volum
e=misc&image=12

 RSA CA

Encryption 253ms 27ms

Decryption 178ms 21ms

http://www.comparitech.com/blog/information-security/rsa-encryption/
http://www.comparitech.com/blog/information-security/rsa-encryption/

