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ABSTRACT 
 

 Finding node centrality has significant applications to the real world. For example, node centrality can be 
used to determine a person that has the potential to spread a disease during a pandemic. However, 
modeling an entire city or nation and finding the most influential people in terms of disease spread would 
be difficult because of the increasing time complexity. There is a way to remedy this, and that is through 
the use of bridge and community detection. These two techniques can be used to analyze a graph by splitting 
it into more digestible pieces called subgraphs. From there, the node centralities of these more manageable 
subgraphs can be found and used to determine which nodes need to be studied. In addition to these 
methods, different algorithms to calculate centrality were analyzed for evaluation, which proved the 
efficiency of this model in regards to time complexity. 

 
 
I. Introduction  
 During an epidemic, the main objective is simple: 
to study and neutralize the widespread disease. 
However, achieving this is much easier said than 
done. Controlling the actions of every person in a 
society is near impossible, making it difficult to 
simply wait the epidemic out. This is where graph 
theory comes into play. The graph as a whole 
would describe a social network, some community 
that is being affected by the epidemic[6],[7]. Each 
node can describe a person, while each edge would 
represent the transmission of the disease. From 
there, the node, or person in this case, with the 
most “influence” can be isolated and then studied 
to gain a better understanding of the disease. In 
order to determine which person has the most 
influence, a node centrality algorithm can be 
applied. Although some of the algorithms may 
capture the characteristics of an epidemic more so 

than others, time complexity is of concern as well. 
What is desired is a satisfactory medium between  
 
accuracy and efficiency. Determining the most 
central node can be broken up into the following 
process: 

 
 
First, bridges in the graph will be determined in 
order to divide the graph into several subgraphs. 
Afterwards, each subgraph will be separated into 
communities, which is useful for further isolation 
of a target. Finally, the most central node(s) can be 
found from these communities using node 
centrality metrics such as degree, betweenness, 
closeness, eigenvector, and Katz centrality. These 
centralities would then be normalized and 



compared among communities to discern which 
nodes are of the highest priority.  
 
 
The design of the paper is as follows: Section II 
provides the definitions of different node 
centrality metrics and how to calculate them, 
Section III and IV discuss the how bridges and 
communities in a graph are detected, Section V 
recounts the time complexity of this model and 
the methods by which node centrality are 
calculated, and Section VI concludes the paper 
and elaborates on the implications of the results. 

 
II. Measuring Node centrality 
 Node centrality in complex networks implies that 
which nodes are the most influential[1],[2] and 
important [10],[11] in the given graph. [1],[5],[11] 
showed how the node centrality works in practice 
and suggested some basic methods those can be 
helpful finding meaningful nodes. In this section, 
we introduce various methods: Degree centrality, 
Closeness Centrality[3], Betweenness Centrality[4], 
and eigenvector based methods. We explained 
each method with examples and compared each 
method at the end of the section. 

 
A. Degree Centrality 

 As the name suggests, the measurement used for 
degree centrality is the degree of a node, or how 
many edges are connected to it. The reasoning 
behind measuring centrality this way is rather 
intuitive: because there are many edges and, 
therefore, nodes that are connected to a specific 
node, perhaps that node can be viewed as having 

the most influence. The centrality of the ith vertex 
vi is denoted by Cd(vi). 

𝐶𝑑(𝑣𝑖) =  𝑑𝑖            Equation 1  

Normalization: 
𝑑𝑖

𝑛
      Equation 2  

Normalization: 
𝑑𝑖

𝑚𝑎𝑥(𝑑𝑖)
      Equation 3  

 di denotes the degree of ith vertex, and max(di) 
denotes the greatest degree out of the n vertices. 
The purpose of normalization is to be able to 
compare graphs with each other. For example, if 
one node on a graph has 100 edges and another 
node on another graph has only 5, then it would 
seem like the first node has much more influence. 
However, if these were normalized, then it is 
possible that the centrality of the first node is 
equal or even less than that of the second, making 
it have just as much if not less influence relative to 
its own graph. 

 
 

Figure 1 Figure 2 



 
 

Example 1: 
Degree Centralities of Figure 1: 

- 𝐶𝑑(𝑣1)  =  6  -     𝐶𝑑(𝑣12)  =

 2 
- 𝐶𝑑(𝑣2)  =  2  -     𝐶𝑑(𝑣13)  =

 3 
- 𝐶𝑑(𝑣3)  =  3  -     𝐶𝑑(𝑣14)  =

 1 
- 𝐶𝑑(𝑣4)  =  2  -     𝐶𝑑(𝑣15)  =

 2 
- 𝐶𝑑(𝑣5)  =  4  -     𝐶𝑑(𝑣16)  =

 1 
- 𝐶𝑑(𝑣6)  =  3  -     𝐶𝑑(𝑣17)  =

 2 
- 𝐶𝑑(𝑣7)  =  4  -     𝐶𝑑(𝑣18)  =

 1 
- 𝐶𝑑(𝑣8)  =  4  -     𝐶𝑑(𝑣19)  =

 5 
- 𝐶𝑑(𝑣9)  =  2  -     𝐶𝑑(𝑣20)  =

 3 
- 𝐶𝑑(𝑣10)  = 2  -     𝐶𝑑(𝑣21)  =

 3 
- 𝐶𝑑(𝑣11)  = 2  -     𝐶𝑑(𝑣22)  =

 2 
  
From this, it can clearly be seen that v1 is the most 
central node in Figure 1. If these were to be 
normalized using Equation 2, then each of these 
would be divided by 22: 

- 𝐶𝑑(𝑣1)  =  
3

11
  -     𝐶𝑑(𝑣12)  =

 
1

11
 

- 𝐶𝑑(𝑣2)  =  
1

11
  -     𝐶𝑑(𝑣13)  =

 
3

22
 

- 𝐶𝑑(𝑣3)  =  
3

22
  -     𝐶𝑑(𝑣14)  =

 
1

22
 

- 𝐶𝑑(𝑣4)  =  
1

11
  -     𝐶𝑑(𝑣15)  =

 
1

11
 

- 𝐶𝑑(𝑣5)  =  
2

11
  -     𝐶𝑑(𝑣16)  =

 
1

22
 

- 𝐶𝑑(𝑣6)  =  
3

22
  -     𝐶𝑑(𝑣17)  =

 
1

11
 

- 𝐶𝑑(𝑣7)  =  
2

11
  -     𝐶𝑑(𝑣18)  =

 
1

22
 

- 𝐶𝑑(𝑣8)  =  
2

11
  -     𝐶𝑑(𝑣19)  =

 
5

22
 

- 𝐶𝑑(𝑣9)  =  
1

11
  -     𝐶𝑑(𝑣20)  =

 
3

22
 

- 𝐶𝑑(𝑣10)  =  
1

11
  -     𝐶𝑑(𝑣21)  =

 
3

22
 



- 𝐶𝑑(𝑣11)  =  
1

11
  -     𝐶𝑑(𝑣22)  =

 
1

11
 

 
And similarly, if they were to be normalized using 
Equation 3, or dividing by the greatest degree 

among di: 
- 𝐶𝑑(𝑣1)  =  1  -     𝐶𝑑(𝑣12)  =

 
1

3
 

- 𝐶𝑑(𝑣2)  =  
1

3
  -     𝐶𝑑(𝑣13)  =

 
1

2
 

- 𝐶𝑑(𝑣3)  =  
1

2
  -     𝐶𝑑(𝑣14)  =

 
1

6
 

- 𝐶𝑑(𝑣4)  =  
1

3
  -     𝐶𝑑(𝑣15)  =

 
1

3
 

- 𝐶𝑑(𝑣5)  =  
2

3
  -     𝐶𝑑(𝑣16)  =

 
1

6
 

- 𝐶𝑑(𝑣6)  =  
1

2
  -     𝐶𝑑(𝑣17)  =

 
1

3
 

- 𝐶𝑑(𝑣7)  =  
2

3
  -     𝐶𝑑(𝑣18)  =

 
1

6
 

- 𝐶𝑑(𝑣8)  =  
2

3
  -     𝐶𝑑(𝑣19)  =

 
5

6
 

- 𝐶𝑑(𝑣9)  =  
1

3
  -     𝐶𝑑(𝑣20)  =

 
1

2
 

- 𝐶𝑑(𝑣10)  =
1

3
  -     𝐶𝑑(𝑣21)  =

 
1

2
 

- 𝐶𝑑(𝑣11)  =
1

3
  -     𝐶𝑑(𝑣22)  =

 
1

3
 

 
The same can be done to Figure 2: 

i di 𝑑𝑖

𝑛
;  𝑛 

=  6 

𝑑𝑖

𝑚𝑎𝑥(𝑑𝑖)
;  𝑚𝑎𝑥(𝑑𝑖)  

=  4 

1 4 2

3
 

1 

2 2 1

3
 

1

2
 

3 2 1

3
 

1

2
 

4 3 1

2
 

3

4
 

5 2 1

3
 

1

2
 

6 1 1

6
 

1

4
 

 
If Equation 2 were to be used to normalize the 
results of these examples, one can observe that the 
nodes of Figure 1 have much less of an influence 
on their network than the nodes in Figure 2. This 
should make sense, as this difference can be 
thought of as spreading a virus through a 
household versus a large city. On the other hand, 
Equation 3 depicts the difference between the 
most and second most central node as much larger 
than Equation 2. 
 
 
 
 
B. Betweenness Centrality 
 
The definition of Betweenness Centrality is more 
complex than that of Degree Centrality. The 
mathematical definition of calculating the 
betweenness centrality can be described as follows:  
 

𝐶𝑏(𝑣𝑖) =  ∑
𝜎𝑠𝑡(𝑣𝑖)

𝜎𝑠𝑡
 Equation 4 

 
where 𝜎𝑠𝑡  represents the number of shortest 

distance between two nodes labeled s and t that are 



not vi, while 𝜎𝑠𝑡(𝑣𝑖) is the number of these 
shortest distance paths that go through vi. 
Technically speaking, the betweenness centrality 
of each node is already normalized because of the 
𝜎𝑠𝑡 that is in the denominator. However, in order 
to normalize the betweenness centrality for the 
sake of comparing graphs, the amount of paths 

between two points s and t must be calculated. If a 
graph has n nodes, there are 𝑛 − 1 nodes to 
consider when counting the number of paths 

because one of vi is excluded. Thus there are 
𝑛−1

2
 

different paths. However, because the order of the 

assignments of s and t need to be considered, there 

are a total of 2 
𝑛−1

2
 different paths. 

 

Normalization: 
𝐶𝑏(𝑣𝑖)

2 
𝑛−1

2

     Equation 5 

 
Example 2: 
 Figure 2 will be examined to demonstrate the 
calculation of the betweenness centrality of v1. 

First, v2 will be assigned as s, and v5 will be assigned 
as t. Thus, 𝜎𝑠𝑡  =  1.This is because the shortest 

path from v2 to v5 crosses through v1, and there is 
only one such path of the same length. With that 
being said, 𝜎𝑠𝑡(𝑣1)  =  1 as well, since, as 
mentioned, the shortest path crosses through v1. 
The same will be repeated for all permutations of 
nodes s and t: 

s, t 𝜎𝑠𝑡 𝜎𝑠𝑡(𝑣1) 

2, 6 1 1 

2, 5 1 1 

2, 4 1 1 

2, 3 1 0 

3, 6 1 1 

3, 5 1 1 

3, 4 1 1 

4, 5 1 0 

4, 6 1 0 

5, 6 1 0 

 

 As the calculation for 𝐶𝑏(𝑣1) states, all of 
𝜎𝑠𝑡(𝑣1)

𝜎𝑠𝑡
 

must be summed in order to calculate the 
betweenness centrality of v1. It can be seen from 
the table that 𝐶𝑏(𝑣1)  =  6.However, this needs to 
be multiplied by 2 because of the permutations of 

s and t, so 𝐶𝑏(𝑣1)  =  12. The same calculations 
can be done to find Cb(vi) for all 1 ≤ 𝑖 ≤ 6. 
 

i Cb(vi) 

1 12 

2 0 

3 0 

4 6 

5 0 

6 0 

 
 It can be seen that v1 is the most central. Again, 
these results need to be normalized in order to 
compare the results between different graphs. As 
mentioned, the factor used to normalize these 

centralities would be 2 
𝑛−1

2
,which in this case 

would be 2 
5

2
 =  20.Thus, the normalized 

centralities are as follows: 
 

i Cb(vi) 

1 
3

5
 



2 0 

3 0 

4 
3

10
 

5 0 

6 0 

 
Overall, betweenness centrality doesn not seem 
to capture the features of the graph as desired. It 

can be seen, for example, that v5 and v6 have the 
same centrality despite v5 being intuitively more 
central.  
 
C. Closeness Centrality 

 
Closeness centrality is relatively similar to 
betweenness centrality in the sense that it uses this 
concept of shortest distance. The closeness 
centrality of a node can be expressed as follows: 
 

𝐶𝑐(𝑣𝑖)  =  
1

𝐼𝑣𝑖

         Equation 6 

𝐼𝑣𝑖
=

1

𝑛−1
∑𝑣𝑖≠𝑣𝑗

𝑑𝑖,𝑗          Equation 7 

 

where di, j is the shortest distance between node vi 
and node vj. The idea behind calculating centrality 
in this manner is to take the average of the shortest 

distances, 𝐼𝑣𝑖
, between vi and all other nodes vj. 

Intuitively, the most central node would have the 
smallest 𝐼𝑣𝑖

,  which is why the reciprocal of this 

value is taken: if the most central node has the 

smallest 𝐼𝑣𝑖
, then it would have the largest 

1

𝐼𝑣𝑖

. 

Example 3:  
The closeness centrality of each node of Figure 2 
will be calculated. The first step is to use Equation 

7. For v1, 𝐼𝑣1
would be calculated as 

1

6−1
(1 +

1 + 1 + 1 + 2)  =
6

5
, since the shortest distance 

between v1 and v2, v3, v4, and v5 would be 1; and 
the shortest distance between v1 and v6 would be 2. 
Then Cc(v1) = 1. This can be done for the other 
vertices as well. 

i 𝐼𝑣𝑖
 𝐶𝑐(𝑣𝑖) 

1 6

5
 

5

6
 

2 9

5
 

5

9
 

3 9

5
 

5

9
 

4 7

5
 

5

7
 

5 8

5
 

5

8
 

6 11

5
 

5

11
 

 
It can be seen that v1 is the most central by this 
algorithm as well. Closeness centrality, for the 
purposes of modeling an epidemic, seems to 
capture the features of the graph relatively well 
compared to betweenness centrality: nodes v2 and 

v3 have equal centralities, v6 is about half as central 
as v1, etc. 

 
D. Eigenvector Centrality 
Just as the name suggests, calculating the centrality 
of each node is based on the calculation of 
eigenvectors and eigenvalues. As a brief summary 
of these two terms, an eigenvector is a vector that 
only scales under the transformation of a matrix, 
while an eigenvalue is the factor by which the 
vector is scaled by. The mathematical definition of 
the eigenvector centrality, Ce(vi), is as follows: 



𝐶𝑒(𝑣𝑖) =  
1

𝜆
∑

𝑛

𝑗=1

𝐴𝑗,𝑖𝐶𝑒(𝑣𝑗)    Equation 8 

where 𝜆  is a constant that will result in an 

eigenvalue, and A is the adjacency matrix of the 
graph, and Aj, i represents the entry in the jth row 

and the ith column of A. The adjacency matrix is 
constructed by first making an 𝑛 × 𝑛  matrix, 

where n is the number of nodes in the graph. If 
there is an edge that connects vi and vj, then Ai, j 

and Aj, i are filled as 1. Every other entry is equal to 
0, making A symmetric across the diagonal of the 
matrix.  
 
Proof: 
Suppose there is a 𝑛 × 1column matrix 𝐶𝑒 such 

that the ith entry is 𝐶𝑒(𝑣𝑖)and n is the number of 
nodes in a given graph. Now, the largest eigenvalue, 

𝜆, and the eigenvector, 𝐶𝑒 , are desired. Let A be 
the adjacency matrix of the graph. The following 
equation and steps can be written: 

𝐴𝐶𝑒 = 𝜆𝐶𝑒 
From there, 𝜆 can be solved for as such: 

𝐴𝐶𝑒 − 𝜆𝐶𝑒 = 0 
𝐶𝑒(𝐴 − 𝜆𝐼)  =  0 

where I is the 𝑛 × 𝑛 identity matrix. The 
determinant of 𝐴 − 𝜆𝐼 =  0 in order for this 
equation to be true, and this is how the values of 
𝜆 are found. The largest value of 𝜆must be used 
to find the centrality of each node.  
Example 4:  
Figure 2 will be used for this example. The 
adjacency matrix of Figure 2 is: 

 

Thus, 𝜆𝐼 −  𝐴would be equal to the following:

 
The determinant of this matrix must be equal to 
0 in order for 𝐶𝑒(𝐴 − 𝜆𝐼)  =  0: 

𝜆6 − 7𝜆4 + 4𝜆3 + 9𝜆2 − 6𝜆 − 1 = 0 
 

This leads to the following solutions: 
𝜆 ≈ {2.629, 1.230, 0.140, −1, −1.320, −1.678} 
 
Thus, 2.629 is taken as 𝜆.This value can be used to 
solve for 𝐶𝑒as follows: 
 

 
This matrix can be turned into an augmented 
matrix, which can then be row-reduced to get 

each of Ce(vi).  

where x is some free variable. It can be seen that 
relative to each other, 𝐶𝑒(𝑣1) is the largest, 

meaning v1 is the most central node. 
 

 
E. Katz Centrality 
Katz centrality is extremely similar to eigenvector 
centrality. It can be recalled that the eigenvector 

centrality of a node vi can be expressed as: 



𝐶𝑒(𝑣𝑖)  =  
1

𝜆
∑

𝑛

𝑗=1

𝐴𝑗,𝑖𝐶𝑒(𝑣𝑗) 

The Katz centrality of a node, Ck(vi), can be defined 
as follows: 

𝐶𝑘(𝑣𝑖) = 𝛼 (∑

𝑛

𝑗=1

𝐴𝑗,𝑖𝐶𝑘(𝑣𝑗)) + 𝛽   Equation 9 

Immediately, the resemblance between the two 
centralities can be seen. The only difference is the 
addition of a constant term, 𝛽. 
Using each of these methods, the three most 
central nodes of Figure 1 are displayed in Table 1 
below. 

Table 1 
 

 1st  2nd 3rd 

Degree v1 v7 v8 

Betweenness v1 v7 v3 

Closeness v1 v5 v6 

Eigenvector v1 v5 v7 

Katz v1 v7 v19 

 
It can be seen that there is a general trend among 
the most central nodes of Figure 1: v1 is the most 
central node, regardless of what centrality metric  
is used; v7 is the second most frequent node that 
appears; and the third most central node is mostly 

a random one that is inconsistent among the 
centralities. For practical purposes, the nodes 
highlighted by the Katz centrality algorithm seem 
the most significant. 
 
Figure 3 displays the time it takes to find the 
centralities of every node according to the 
algorithm. 
 
Figure 3 
 
III Detecting Bridges 

 To be precise, a bridge is an edge that separates a 
graph into an increased number of connected 
subgraphs. In Figure 1, the bridges include the 

edges between v1 and v5, v6 and v16, and v13 and v14. 
These bridges will be used to find subgraphs of 
Figure 1. Finding the centralities of these 
subgraphs would be more efficient than finding 
the most central nodes of the graph as a whole, as 
the time complexity would be lower. We used an 
algorithm that was introduced in [8]. 

 In order to determine whether an edge is a bridge, 
a Depth-First Search (DFS) will be used for this 
algorithm. The gist of this algorithm is to pick and 
mark an arbitrary node as a root. From there, an 
unmarked adjacent node will be moved to until 
there are no more unmarked adjacent nodes. The 
final node marked will then be backtracked from, 
and then other unmarked nodes will be traversed 
to. 

 

 

Figure 4 Figure 5 



  

Figure 5 demonstrates Figure 4 without the 
bridges. It can be seen that these edges cause the 
number of connected portions to increase, to the 
point of having three subgraphs. This is when 

normalization comes into play. For Figure 4, the k 

most central nodes for some positive integer k can 
simply be found. However, once the graph has 
been split as in Figure 5, normalization must be 
used to determine and compare the most central 
nodes of each subgraph, from which the k most 
central nodes can be found. 

Table 2 demonstrates the process by which 
bridges are found using DFS. It should be noted 
that the order that the nodes were followed is not 
going to be the same every time this search 
algorithm is performed and that which adjacent, 
unvisited node is visited next is completely 
random. 

Table 2: 

Current 
node 

Visit 
order 

Low 
order 

Validate  
(Whether it’s a bridge or 

not) 

Update 
 (changing low order) 

1 1 1   

2 2 2   

9 3 3   

11 4 4   

3 5 5   

7 6 6   

12 7 7   

13 8 8   

14 9 9 Since the low order of v14 
is greater than the visit 
order of v13, this edge is a 
bridge. 

 

 13 8 6 Since the low order of v13 
is less than the visit order 
of v12, this edge is not a 
bridge. 

When backtracking from v13, the low order of 
v13 must be replaced by the low order of v7, 
from 8 to 6. 

12 7 6 Since the low order of v12 
is equal to the visit order 
of v7, this edge is not a 
bridge. 

When backtracking from v12, the low order of 
v12 must be replaced by the low order of v7, 
from 7 to 6. 

7 6 1 Since the low order of v7 
is less than the visit order 
of v3, this edge is not a 
bridge. 

When backtracking from v7, the low order of v7 
must be replaced by the low order of v1, from 6 
to 1. 

3 5 1 Since the low order of v3 
is less than the visit order 
of v11, this edge is not a 
bridge. 

When backtracking from v3, the low order of v3 
must be replaced by the low order of v7 from 5 
to 1. 

11 4 1 Since the low order of v11 
is less than the visit order 
of v9, this edge is not a 
bridge. 

When backtracking from v11, the low order of 
v11 must be replaced by the low order of v3, 
from 4 to 1. 

9 3 1 Since the low order of v9 
is less than the visit order 
of v2, this edge is not a 
bridge. 

When backtracking from v9, the low order of v9 
must be replaced by the low order of v11 from 3 
to 1. 

2 2 1 Since the low order of v2 
is equal to the visit order 
of v1, this edge is not a 
bridge. 

When backtracking from v2, the low order of v2 
must be replaced by the low order of v9 from 2 
to 1. 

1 1 1   

4 10 10   

15 11 11   

10 12 12→1 Since the low order of v10 
is less than the visit order 
of v15, this edge is not a 
bridge. 

When backtracking from v10, the low order of 
v10 must be replaced by the low order of v1, 
from 12 to 1. 

15 11 1 Since the low order of v15 
is less than the visit order 
of v4, this edge is not a 
bridge. 

When backtracking from v15, the low order of 
v15 must be replaced by the low order of v10, 
from 11 to 1. 

4 10 1 Since the low order of v4 
is equal to the visit order 
of v1, this edge is not a 
bridge. 

When backtracking from v4, the low order of v4 
must be replaced by the low order of v15, from 
10 to 1. 

1 1 1   

5 13 13 Since the low order of v5 
is greater than the visit 
order of v1, this edge is a 
bridge. 

 

6 14 14   

16 15 15 Since the low order of v16 
is greater than the visit 
order of v6, this edge is a 
bridge. 

 

6 14 13 Since the low order of v6 
is equal to the visit order 
of v5, this edge is not a 
bridge. 

When backtracking from v6, the low order of v6 
must be replaced by the low order of v5, from 
14 to 13. 

8 16 16   

17 17 17   

20 18 18   

22 19 19   

21 20 20   



19 21 21   

18 22 22→ 
16 

Since the low order of v18 
is less than the visit order 
of v19, this edge is not a 
bridge. 

When backtracking from v18, the low order of 
v18 must be replaced by the low order of v8, 
from 22 to 16. 

19 21 16 Since the low order of v19 
is less than the visit order 
of v21, this edge is not a 
bridge. 

When backtracking from v19, the low order of 
v19 must be replaced by the low order of v18, 
from 21 to 16. 

21 20 13 Since the low order of v21 
is less than the visit order 
of v22, this edge is not a 
bridge. 

When backtracking from v21, the low order of 
v21 must be replaced by the low order of v5, 
from 20 to 13. 

22 19 13 Since the low order of v22 
is less than the visit order 
of v20, this edge is not a 
bridge. 

When backtracking from v22, the low order of 
v22 must be replaced by the low order of v21, 
from 19 to 13. 

20 18 13 Since the low order of v20 
is less than the visit order 
of v17, this edge is not a 
bridge. 

When backtracking from v20, the low order of 
v20 must be replaced by the low order of v22, 
from 18 to 13. 

17 17 13 Since the low order of v17 
is less than the visit order 
of v20, this edge is not a 
bridge. 

When backtracking from v17, the low order of 
v17 must be replaced by the low order of v20, 
from 17 to 13. 

8 16 13 Since the low order of v8 
is less than the visit order 
of v6, this edge is not a 
bridge. 

When backtracking from v8, the low order of v8 
must be replaced by the low order of v17, from 
16 to 13. 

6 15 13  When backtracking from v6, the low order of v6 
must be replaced by the low order of v5, from 
15 to 13. 

 

IV. Community Detection 

 Now that bridges can be detected and can be 
detached, communities must be detected so that 
the node centrality algorithm can finally be put to 
use to evaluate the graph. To elaborate, a 
community is simply a group of nodes that has a 
high modularity, which takes on a value between 

−
1

2
 and 1, inclusive. In order to measure this 

modularity and therefore determine the 
communities of a node, the Louvain algorithm 
will be used. 
The Louvain algorithm[9] is a well-known 
community detection method that is widely used 
in network analysis. The inspiration for this 
method is to optimize modularity, which would 
thus imply that the communities have been 
determined in the most optimal way possible. 
The calculation for the algorithm is as follows: 

𝑄 =
1

2𝑚
∑

𝑖,𝑗

[𝐴𝑖.𝑗 −
𝑘𝑖𝑘𝑗

2𝑚
] 𝛿(𝑐𝑖, 𝑐𝑗) 

where Q is modularity, Ai, j is the weight of the 

edge between nodes vi and vj, ki and kj are the sum 
of the weights of the edges attached to nodes vi 

and vj, m is the sum of all of the edge weights in 
the graph, ci and cj are the communities of nodes  

vi and vj, and 𝛿is the Kronecker delta function, 
which is defined as 1 if 𝑐𝑖 = 𝑐𝑗 and 0 otherwise. 

However, the weakness of this algorithm arises 
from this motivation: because the algorithm is 
testing all possible combinations of communities 
to find the most optimal modularity, the 
algorithm trades increased accuracy for increased 
calculation time. In order to combat this 
inefficiency, the Louvain algorithm is often split 
into two iterative processes. 

The first step to maximize modularity efficiently 
is to assign each node to its own community. 

Afterwards, for each vi, the change in modularity 
is found by removing vi into a neighboring 

community of vj. This change in modularity can 
be calculated using the following: 

𝛥𝑄 =  [
𝛴𝑖𝑛  + 2𝑘𝑖,𝑖𝑛

2𝑚
− (

𝛴𝑡𝑜𝑡 + 𝑘𝑖

2𝑚
)2] − [

𝛴𝑖𝑛

2𝑚

− (
𝛴𝑡𝑜𝑡

2𝑚
)2 − (

𝑘𝑖

2𝑚
)2] 

where 𝛴𝑖𝑛is the sum of all the weights of the 
edges inside the community that node vi is 
moving into, 𝛴𝑡𝑜𝑡 is the sum of the weights of all 

connection occurring in the new community, ki is 

the weighted degree of vi, and ki, in is the sum of 

the weights of the links between vi and the other 
nodes in the community that vi is moving into. 

Since Q is supposed to be maximized for the 
most optimal representation of communities in a 
network, a positive 𝛥𝑄 is desirable, as it 



demonstrates that modularity has increased, thus 
becoming more optimal. This calculation is 
repeated until no increase in modularity can 
occur, after which the second step can be used. 

The second step is to build a new community 
from the communities that were created from the 
first step, where the weights of the new edges 
between nodes are simply the sum of the weights 
of edges between the communities. Essentially, 
the communities are replaced by single nodes 
that represent them. The iterative part of this 
process arises from performing the first and 
second step, in that order, repeatedly until the 
optimal communities have been reached. 

V. Evaluation 

A. Device Specs 

 The CPU on the computer that was used 
is an Intel(R) Core(TM) i7-10750H CPU @ 
2.60GHz. The GPU is an NVIDIA GeForce RTX 
2070 with Max-Q Design. The computer also 
runs on Windows 10 and has 16.0 GB of 
installed RAM. The language used to evaluate 
these results was Python, and the IDE used is 
Pyzo. 

B. Data 

Synthetic data would be used to emulate a 
community as closely as possible. The first types 
of graphs that were used all had 800 nodes, and a 
number of edges ranging from 100 to 600. The 
next graphs have 200 to 1,400 nodes, where the 
number of edges is directly proportional to the 
number of nodes. Finally, to test the effects of 
using bridge and community detection, a graph 
with 1,443 nodes and 897 edges was used. As 
shown by Table 1, the results of the node 
centrality algorithms seem to align with intuition. 
Each of these graphs were randomly generated. 

C. Evaluation of Node Centralities and 
Proposed Methods 
Figure 6 shows the time taken using each 
method to calculate the node centrality of a 
random graph with 800 nodes. 

Figure 6

 

Looking at Figure 6, the differences in time 
computed for each algorithm do not begin to show 
until there are about 420 edges between the 800 
nodes. Thus, a direct proportion will be used to 
run trials on graphs with different amounts of 
nodes; the ratio between edges and nodes will be 
420:800. Although it is difficult to say whether this 
would be the case in a real-world scenario, it is 
expected that the density — the ratio of edges to 
nodes  — would remain constant. 

Figure 7 

 

Figure 7 compares the time it takes to compute the 
node centrality based on the ratio of edges to 



nodes that was determined from Figure 6. 
Generally, it can be seen that eigenvector centrality 
takes the longest, while degree centrality takes the 
shortest amount of time. In addition, these times 
can be further improved by implementing the 
concepts of bridge and community detection.  

Figure 8 

 

Figure 8 demonstrates the time taken to compute 
the node centrality for each algorithm using 
neither bridge nor community detection, bridge 
detection only, and both bridge and community 
detection. As shown in Figure 8, the time it takes 
to compute these node centralities decreases, 
sometimes by dramatic amounts, by 
incorporating bridge and community detection. 

VI. Conclusion and Future works 

In summary, node centrality, as its names suggests, 
measures the connectivity of a node to others. The 
significance behind this concept is that the most 
influential node can be determined from a given 
graph, which can be used to represent any type of 
network that appears in a society, including 
communities in social media, analyzing business 
interactions, and even modeling contact patterns 
during an epidemic. 

The proposed method of calculation for node 
centrality (using bridge and community detection) 
differentiates from simply calculating the node 

centrality of the entire graph because of its 
efficiency: bridge and community detection break 
the graph into communities to calculate the node 
centrality of these. Then, the node centralities of 
each community are compared to determine the 
most central nodes. As shown in Figure 8, the 
incorporation of bridge and community detection 
proved to be effective in cutting the calculation 
time for all node centrality algorithms. The results 
are especially noticeable when looking at 
calculating the eigenvector centrality, as the time 
has been cut from about 0.57 seconds to about 
0.46 seconds with bridge detection alone. This 
time was decreased even farther with the use of 
community detection, dropping it down to an 
astonishing 0.14 seconds.  

In future works, the proposed model will further 
consider the statistical properties of the graph in 
order to make the analysis more accurate. In 
addition to an improvement in accuracy, the 
computation time would also be reduced in order 
to make the model have tolerable time. 
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