
Efficient Measuring of Node Centrality
by Detecting Bridges and Communities.
Sol Kim
Farragut High School

ABSTRACT

 Finding node centrality has significant applications to the real world. For example, node centrality can be
used to determine a person that has the potential to spread a disease during a pandemic. However,
modeling an entire city or nation and finding the most influential people in terms of disease spread would
be difficult because of the increasing time complexity. There is a way to remedy this, and that is through
the use of bridge and community detection. These two techniques can be used to analyze a graph by splitting
it into more digestible pieces called subgraphs. From there, the node centralities of these more manageable
subgraphs can be found and used to determine which nodes need to be studied. In addition to these
methods, different algorithms to calculate centrality were analyzed for evaluation, which proved the
efficiency of this model in regards to time complexity.

I. Introduction
 During an epidemic, the main objective is simple:
to study and neutralize the widespread disease.
However, achieving this is much easier said than
done. Controlling the actions of every person in a
society is near impossible, making it difficult to
simply wait the epidemic out. This is where graph
theory comes into play. The graph as a whole
would describe a social network, some community
that is being affected by the epidemic[6],[7]. Each
node can describe a person, while each edge would
represent the transmission of the disease. From
there, the node, or person in this case, with the
most “influence” can be isolated and then studied
to gain a better understanding of the disease. In
order to determine which person has the most
influence, a node centrality algorithm can be
applied. Although some of the algorithms may
capture the characteristics of an epidemic more so

than others, time complexity is of concern as well.
What is desired is a satisfactory medium between

accuracy and efficiency. Determining the most
central node can be broken up into the following
process:

First, bridges in the graph will be determined in
order to divide the graph into several subgraphs.
Afterwards, each subgraph will be separated into
communities, which is useful for further isolation
of a target. Finally, the most central node(s) can be
found from these communities using node
centrality metrics such as degree, betweenness,
closeness, eigenvector, and Katz centrality. These
centralities would then be normalized and

compared among communities to discern which
nodes are of the highest priority.

The design of the paper is as follows: Section II
provides the definitions of different node
centrality metrics and how to calculate them,
Section III and IV discuss the how bridges and
communities in a graph are detected, Section V
recounts the time complexity of this model and
the methods by which node centrality are
calculated, and Section VI concludes the paper
and elaborates on the implications of the results.

II. Measuring Node centrality
 Node centrality in complex networks implies that
which nodes are the most influential[1],[2] and
important [10],[11] in the given graph. [1],[5],[11]
showed how the node centrality works in practice
and suggested some basic methods those can be
helpful finding meaningful nodes. In this section,
we introduce various methods: Degree centrality,
Closeness Centrality[3], Betweenness Centrality[4],
and eigenvector based methods. We explained
each method with examples and compared each
method at the end of the section.

A. Degree Centrality

 As the name suggests, the measurement used for
degree centrality is the degree of a node, or how
many edges are connected to it. The reasoning
behind measuring centrality this way is rather
intuitive: because there are many edges and,
therefore, nodes that are connected to a specific
node, perhaps that node can be viewed as having

the most influence. The centrality of the ith vertex
vi is denoted by Cd(vi).

𝐶𝑑(𝑣𝑖) = 𝑑𝑖 Equation 1

Normalization:
𝑑𝑖

𝑛
 Equation 2

Normalization:
𝑑𝑖

𝑚𝑎𝑥(𝑑𝑖)
 Equation 3

 di denotes the degree of ith vertex, and max(di)
denotes the greatest degree out of the n vertices.
The purpose of normalization is to be able to
compare graphs with each other. For example, if
one node on a graph has 100 edges and another
node on another graph has only 5, then it would
seem like the first node has much more influence.
However, if these were normalized, then it is
possible that the centrality of the first node is
equal or even less than that of the second, making
it have just as much if not less influence relative to
its own graph.

Figure 1 Figure 2

Example 1:
Degree Centralities of Figure 1:

- 𝐶𝑑(𝑣1) = 6 - 𝐶𝑑(𝑣12) =

 2
- 𝐶𝑑(𝑣2) = 2 - 𝐶𝑑(𝑣13) =

 3
- 𝐶𝑑(𝑣3) = 3 - 𝐶𝑑(𝑣14) =

 1
- 𝐶𝑑(𝑣4) = 2 - 𝐶𝑑(𝑣15) =

 2
- 𝐶𝑑(𝑣5) = 4 - 𝐶𝑑(𝑣16) =

 1
- 𝐶𝑑(𝑣6) = 3 - 𝐶𝑑(𝑣17) =

 2
- 𝐶𝑑(𝑣7) = 4 - 𝐶𝑑(𝑣18) =

 1
- 𝐶𝑑(𝑣8) = 4 - 𝐶𝑑(𝑣19) =

 5
- 𝐶𝑑(𝑣9) = 2 - 𝐶𝑑(𝑣20) =

 3
- 𝐶𝑑(𝑣10) = 2 - 𝐶𝑑(𝑣21) =

 3
- 𝐶𝑑(𝑣11) = 2 - 𝐶𝑑(𝑣22) =

 2

From this, it can clearly be seen that v1 is the most
central node in Figure 1. If these were to be
normalized using Equation 2, then each of these
would be divided by 22:

- 𝐶𝑑(𝑣1) =
3

11
 - 𝐶𝑑(𝑣12) =

1

11

- 𝐶𝑑(𝑣2) =
1

11
 - 𝐶𝑑(𝑣13) =

3

22

- 𝐶𝑑(𝑣3) =
3

22
 - 𝐶𝑑(𝑣14) =

1

22

- 𝐶𝑑(𝑣4) =
1

11
 - 𝐶𝑑(𝑣15) =

1

11

- 𝐶𝑑(𝑣5) =
2

11
 - 𝐶𝑑(𝑣16) =

1

22

- 𝐶𝑑(𝑣6) =
3

22
 - 𝐶𝑑(𝑣17) =

1

11

- 𝐶𝑑(𝑣7) =
2

11
 - 𝐶𝑑(𝑣18) =

1

22

- 𝐶𝑑(𝑣8) =
2

11
 - 𝐶𝑑(𝑣19) =

5

22

- 𝐶𝑑(𝑣9) =
1

11
 - 𝐶𝑑(𝑣20) =

3

22

- 𝐶𝑑(𝑣10) =
1

11
 - 𝐶𝑑(𝑣21) =

3

22

- 𝐶𝑑(𝑣11) =
1

11
 - 𝐶𝑑(𝑣22) =

1

11

And similarly, if they were to be normalized using
Equation 3, or dividing by the greatest degree

among di:
- 𝐶𝑑(𝑣1) = 1 - 𝐶𝑑(𝑣12) =

1

3

- 𝐶𝑑(𝑣2) =
1

3
 - 𝐶𝑑(𝑣13) =

1

2

- 𝐶𝑑(𝑣3) =
1

2
 - 𝐶𝑑(𝑣14) =

1

6

- 𝐶𝑑(𝑣4) =
1

3
 - 𝐶𝑑(𝑣15) =

1

3

- 𝐶𝑑(𝑣5) =
2

3
 - 𝐶𝑑(𝑣16) =

1

6

- 𝐶𝑑(𝑣6) =
1

2
 - 𝐶𝑑(𝑣17) =

1

3

- 𝐶𝑑(𝑣7) =
2

3
 - 𝐶𝑑(𝑣18) =

1

6

- 𝐶𝑑(𝑣8) =
2

3
 - 𝐶𝑑(𝑣19) =

5

6

- 𝐶𝑑(𝑣9) =
1

3
 - 𝐶𝑑(𝑣20) =

1

2

- 𝐶𝑑(𝑣10) =
1

3
 - 𝐶𝑑(𝑣21) =

1

2

- 𝐶𝑑(𝑣11) =
1

3
 - 𝐶𝑑(𝑣22) =

1

3

The same can be done to Figure 2:

i di 𝑑𝑖

𝑛
; 𝑛

= 6

𝑑𝑖

𝑚𝑎𝑥(𝑑𝑖)
; 𝑚𝑎𝑥(𝑑𝑖)

= 4

1 4 2

3

1

2 2 1

3

1

2

3 2 1

3

1

2

4 3 1

2

3

4

5 2 1

3

1

2

6 1 1

6

1

4

If Equation 2 were to be used to normalize the
results of these examples, one can observe that the
nodes of Figure 1 have much less of an influence
on their network than the nodes in Figure 2. This
should make sense, as this difference can be
thought of as spreading a virus through a
household versus a large city. On the other hand,
Equation 3 depicts the difference between the
most and second most central node as much larger
than Equation 2.

B. Betweenness Centrality

The definition of Betweenness Centrality is more
complex than that of Degree Centrality. The
mathematical definition of calculating the
betweenness centrality can be described as follows:

𝐶𝑏(𝑣𝑖) = ∑
𝜎𝑠𝑡(𝑣𝑖)

𝜎𝑠𝑡
 Equation 4

where 𝜎𝑠𝑡 represents the number of shortest

distance between two nodes labeled s and t that are

not vi, while 𝜎𝑠𝑡(𝑣𝑖) is the number of these
shortest distance paths that go through vi.
Technically speaking, the betweenness centrality
of each node is already normalized because of the
𝜎𝑠𝑡 that is in the denominator. However, in order
to normalize the betweenness centrality for the
sake of comparing graphs, the amount of paths

between two points s and t must be calculated. If a
graph has n nodes, there are 𝑛 − 1 nodes to
consider when counting the number of paths

because one of vi is excluded. Thus there are
𝑛−1

2

different paths. However, because the order of the

assignments of s and t need to be considered, there

are a total of 2
𝑛−1

2
 different paths.

Normalization:
𝐶𝑏(𝑣𝑖)

2
𝑛−1

2

 Equation 5

Example 2:
 Figure 2 will be examined to demonstrate the
calculation of the betweenness centrality of v1.

First, v2 will be assigned as s, and v5 will be assigned
as t. Thus, 𝜎𝑠𝑡 = 1.This is because the shortest

path from v2 to v5 crosses through v1, and there is
only one such path of the same length. With that
being said, 𝜎𝑠𝑡(𝑣1) = 1 as well, since, as
mentioned, the shortest path crosses through v1.
The same will be repeated for all permutations of
nodes s and t:

s, t 𝜎𝑠𝑡 𝜎𝑠𝑡(𝑣1)

2, 6 1 1

2, 5 1 1

2, 4 1 1

2, 3 1 0

3, 6 1 1

3, 5 1 1

3, 4 1 1

4, 5 1 0

4, 6 1 0

5, 6 1 0

 As the calculation for 𝐶𝑏(𝑣1) states, all of
𝜎𝑠𝑡(𝑣1)

𝜎𝑠𝑡

must be summed in order to calculate the
betweenness centrality of v1. It can be seen from
the table that 𝐶𝑏(𝑣1) = 6.However, this needs to
be multiplied by 2 because of the permutations of

s and t, so 𝐶𝑏(𝑣1) = 12. The same calculations
can be done to find Cb(vi) for all 1 ≤ 𝑖 ≤ 6.

i Cb(vi)

1 12

2 0

3 0

4 6

5 0

6 0

 It can be seen that v1 is the most central. Again,
these results need to be normalized in order to
compare the results between different graphs. As
mentioned, the factor used to normalize these

centralities would be 2
𝑛−1

2
,which in this case

would be 2
5

2
 = 20.Thus, the normalized

centralities are as follows:

i Cb(vi)

1
3

5

2 0

3 0

4
3

10

5 0

6 0

Overall, betweenness centrality doesn not seem
to capture the features of the graph as desired. It

can be seen, for example, that v5 and v6 have the
same centrality despite v5 being intuitively more
central.

C. Closeness Centrality

Closeness centrality is relatively similar to
betweenness centrality in the sense that it uses this
concept of shortest distance. The closeness
centrality of a node can be expressed as follows:

𝐶𝑐(𝑣𝑖) =
1

𝐼𝑣𝑖

 Equation 6

𝐼𝑣𝑖
=

1

𝑛−1
∑𝑣𝑖≠𝑣𝑗

𝑑𝑖,𝑗 Equation 7

where di, j is the shortest distance between node vi
and node vj. The idea behind calculating centrality
in this manner is to take the average of the shortest

distances, 𝐼𝑣𝑖
, between vi and all other nodes vj.

Intuitively, the most central node would have the
smallest 𝐼𝑣𝑖

, which is why the reciprocal of this

value is taken: if the most central node has the

smallest 𝐼𝑣𝑖
, then it would have the largest

1

𝐼𝑣𝑖

.

Example 3:
The closeness centrality of each node of Figure 2
will be calculated. The first step is to use Equation

7. For v1, 𝐼𝑣1
would be calculated as

1

6−1
(1 +

1 + 1 + 1 + 2) =
6

5
, since the shortest distance

between v1 and v2, v3, v4, and v5 would be 1; and
the shortest distance between v1 and v6 would be 2.
Then Cc(v1) = 1. This can be done for the other
vertices as well.

i 𝐼𝑣𝑖
 𝐶𝑐(𝑣𝑖)

1 6

5

5

6

2 9

5

5

9

3 9

5

5

9

4 7

5

5

7

5 8

5

5

8

6 11

5

5

11

It can be seen that v1 is the most central by this
algorithm as well. Closeness centrality, for the
purposes of modeling an epidemic, seems to
capture the features of the graph relatively well
compared to betweenness centrality: nodes v2 and

v3 have equal centralities, v6 is about half as central
as v1, etc.

D. Eigenvector Centrality
Just as the name suggests, calculating the centrality
of each node is based on the calculation of
eigenvectors and eigenvalues. As a brief summary
of these two terms, an eigenvector is a vector that
only scales under the transformation of a matrix,
while an eigenvalue is the factor by which the
vector is scaled by. The mathematical definition of
the eigenvector centrality, Ce(vi), is as follows:

𝐶𝑒(𝑣𝑖) =
1

𝜆
∑

𝑛

𝑗=1

𝐴𝑗,𝑖𝐶𝑒(𝑣𝑗) Equation 8

where 𝜆 is a constant that will result in an

eigenvalue, and A is the adjacency matrix of the
graph, and Aj, i represents the entry in the jth row

and the ith column of A. The adjacency matrix is
constructed by first making an 𝑛 × 𝑛 matrix,

where n is the number of nodes in the graph. If
there is an edge that connects vi and vj, then Ai, j

and Aj, i are filled as 1. Every other entry is equal to
0, making A symmetric across the diagonal of the
matrix.

Proof:
Suppose there is a 𝑛 × 1column matrix 𝐶𝑒 such

that the ith entry is 𝐶𝑒(𝑣𝑖)and n is the number of
nodes in a given graph. Now, the largest eigenvalue,

𝜆, and the eigenvector, 𝐶𝑒 , are desired. Let A be
the adjacency matrix of the graph. The following
equation and steps can be written:

𝐴𝐶𝑒 = 𝜆𝐶𝑒
From there, 𝜆 can be solved for as such:

𝐴𝐶𝑒 − 𝜆𝐶𝑒 = 0
𝐶𝑒(𝐴 − 𝜆𝐼) = 0

where I is the 𝑛 × 𝑛 identity matrix. The
determinant of 𝐴 − 𝜆𝐼 = 0 in order for this
equation to be true, and this is how the values of
𝜆 are found. The largest value of 𝜆must be used
to find the centrality of each node.
Example 4:
Figure 2 will be used for this example. The
adjacency matrix of Figure 2 is:

Thus, 𝜆𝐼 − 𝐴would be equal to the following:

The determinant of this matrix must be equal to
0 in order for 𝐶𝑒(𝐴 − 𝜆𝐼) = 0:

𝜆6 − 7𝜆4 + 4𝜆3 + 9𝜆2 − 6𝜆 − 1 = 0

This leads to the following solutions:
𝜆 ≈ {2.629, 1.230, 0.140, −1, −1.320, −1.678}

Thus, 2.629 is taken as 𝜆.This value can be used to
solve for 𝐶𝑒as follows:

This matrix can be turned into an augmented
matrix, which can then be row-reduced to get

each of Ce(vi).

where x is some free variable. It can be seen that
relative to each other, 𝐶𝑒(𝑣1) is the largest,

meaning v1 is the most central node.

E. Katz Centrality
Katz centrality is extremely similar to eigenvector
centrality. It can be recalled that the eigenvector

centrality of a node vi can be expressed as:

𝐶𝑒(𝑣𝑖) =
1

𝜆
∑

𝑛

𝑗=1

𝐴𝑗,𝑖𝐶𝑒(𝑣𝑗)

The Katz centrality of a node, Ck(vi), can be defined
as follows:

𝐶𝑘(𝑣𝑖) = 𝛼 (∑

𝑛

𝑗=1

𝐴𝑗,𝑖𝐶𝑘(𝑣𝑗)) + 𝛽 Equation 9

Immediately, the resemblance between the two
centralities can be seen. The only difference is the
addition of a constant term, 𝛽.
Using each of these methods, the three most
central nodes of Figure 1 are displayed in Table 1
below.

Table 1

 1st 2nd 3rd

Degree v1 v7 v8

Betweenness v1 v7 v3

Closeness v1 v5 v6

Eigenvector v1 v5 v7

Katz v1 v7 v19

It can be seen that there is a general trend among
the most central nodes of Figure 1: v1 is the most
central node, regardless of what centrality metric
is used; v7 is the second most frequent node that
appears; and the third most central node is mostly

a random one that is inconsistent among the
centralities. For practical purposes, the nodes
highlighted by the Katz centrality algorithm seem
the most significant.

Figure 3 displays the time it takes to find the
centralities of every node according to the
algorithm.

Figure 3

III Detecting Bridges

 To be precise, a bridge is an edge that separates a
graph into an increased number of connected
subgraphs. In Figure 1, the bridges include the

edges between v1 and v5, v6 and v16, and v13 and v14.
These bridges will be used to find subgraphs of
Figure 1. Finding the centralities of these
subgraphs would be more efficient than finding
the most central nodes of the graph as a whole, as
the time complexity would be lower. We used an
algorithm that was introduced in [8].

 In order to determine whether an edge is a bridge,
a Depth-First Search (DFS) will be used for this
algorithm. The gist of this algorithm is to pick and
mark an arbitrary node as a root. From there, an
unmarked adjacent node will be moved to until
there are no more unmarked adjacent nodes. The
final node marked will then be backtracked from,
and then other unmarked nodes will be traversed
to.

Figure 4 Figure 5

Figure 5 demonstrates Figure 4 without the
bridges. It can be seen that these edges cause the
number of connected portions to increase, to the
point of having three subgraphs. This is when

normalization comes into play. For Figure 4, the k

most central nodes for some positive integer k can
simply be found. However, once the graph has
been split as in Figure 5, normalization must be
used to determine and compare the most central
nodes of each subgraph, from which the k most
central nodes can be found.

Table 2 demonstrates the process by which
bridges are found using DFS. It should be noted
that the order that the nodes were followed is not
going to be the same every time this search
algorithm is performed and that which adjacent,
unvisited node is visited next is completely
random.

Table 2:

Current
node

Visit
order

Low
order

Validate
(Whether it’s a bridge or

not)

Update
 (changing low order)

1 1 1

2 2 2

9 3 3

11 4 4

3 5 5

7 6 6

12 7 7

13 8 8

14 9 9 Since the low order of v14
is greater than the visit
order of v13, this edge is a
bridge.

 13 8 6 Since the low order of v13
is less than the visit order
of v12, this edge is not a
bridge.

When backtracking from v13, the low order of
v13 must be replaced by the low order of v7,
from 8 to 6.

12 7 6 Since the low order of v12
is equal to the visit order
of v7, this edge is not a
bridge.

When backtracking from v12, the low order of
v12 must be replaced by the low order of v7,
from 7 to 6.

7 6 1 Since the low order of v7
is less than the visit order
of v3, this edge is not a
bridge.

When backtracking from v7, the low order of v7
must be replaced by the low order of v1, from 6
to 1.

3 5 1 Since the low order of v3
is less than the visit order
of v11, this edge is not a
bridge.

When backtracking from v3, the low order of v3
must be replaced by the low order of v7 from 5
to 1.

11 4 1 Since the low order of v11
is less than the visit order
of v9, this edge is not a
bridge.

When backtracking from v11, the low order of
v11 must be replaced by the low order of v3,
from 4 to 1.

9 3 1 Since the low order of v9
is less than the visit order
of v2, this edge is not a
bridge.

When backtracking from v9, the low order of v9
must be replaced by the low order of v11 from 3
to 1.

2 2 1 Since the low order of v2
is equal to the visit order
of v1, this edge is not a
bridge.

When backtracking from v2, the low order of v2
must be replaced by the low order of v9 from 2
to 1.

1 1 1

4 10 10

15 11 11

10 12 12→1 Since the low order of v10
is less than the visit order
of v15, this edge is not a
bridge.

When backtracking from v10, the low order of
v10 must be replaced by the low order of v1,
from 12 to 1.

15 11 1 Since the low order of v15
is less than the visit order
of v4, this edge is not a
bridge.

When backtracking from v15, the low order of
v15 must be replaced by the low order of v10,
from 11 to 1.

4 10 1 Since the low order of v4
is equal to the visit order
of v1, this edge is not a
bridge.

When backtracking from v4, the low order of v4
must be replaced by the low order of v15, from
10 to 1.

1 1 1

5 13 13 Since the low order of v5
is greater than the visit
order of v1, this edge is a
bridge.

6 14 14

16 15 15 Since the low order of v16
is greater than the visit
order of v6, this edge is a
bridge.

6 14 13 Since the low order of v6
is equal to the visit order
of v5, this edge is not a
bridge.

When backtracking from v6, the low order of v6
must be replaced by the low order of v5, from
14 to 13.

8 16 16

17 17 17

20 18 18

22 19 19

21 20 20

19 21 21

18 22 22→
16

Since the low order of v18
is less than the visit order
of v19, this edge is not a
bridge.

When backtracking from v18, the low order of
v18 must be replaced by the low order of v8,
from 22 to 16.

19 21 16 Since the low order of v19
is less than the visit order
of v21, this edge is not a
bridge.

When backtracking from v19, the low order of
v19 must be replaced by the low order of v18,
from 21 to 16.

21 20 13 Since the low order of v21
is less than the visit order
of v22, this edge is not a
bridge.

When backtracking from v21, the low order of
v21 must be replaced by the low order of v5,
from 20 to 13.

22 19 13 Since the low order of v22
is less than the visit order
of v20, this edge is not a
bridge.

When backtracking from v22, the low order of
v22 must be replaced by the low order of v21,
from 19 to 13.

20 18 13 Since the low order of v20
is less than the visit order
of v17, this edge is not a
bridge.

When backtracking from v20, the low order of
v20 must be replaced by the low order of v22,
from 18 to 13.

17 17 13 Since the low order of v17
is less than the visit order
of v20, this edge is not a
bridge.

When backtracking from v17, the low order of
v17 must be replaced by the low order of v20,
from 17 to 13.

8 16 13 Since the low order of v8
is less than the visit order
of v6, this edge is not a
bridge.

When backtracking from v8, the low order of v8
must be replaced by the low order of v17, from
16 to 13.

6 15 13 When backtracking from v6, the low order of v6
must be replaced by the low order of v5, from
15 to 13.

IV. Community Detection

 Now that bridges can be detected and can be
detached, communities must be detected so that
the node centrality algorithm can finally be put to
use to evaluate the graph. To elaborate, a
community is simply a group of nodes that has a
high modularity, which takes on a value between

−
1

2
 and 1, inclusive. In order to measure this

modularity and therefore determine the
communities of a node, the Louvain algorithm
will be used.
The Louvain algorithm[9] is a well-known
community detection method that is widely used
in network analysis. The inspiration for this
method is to optimize modularity, which would
thus imply that the communities have been
determined in the most optimal way possible.
The calculation for the algorithm is as follows:

𝑄 =
1

2𝑚
∑

𝑖,𝑗

[𝐴𝑖.𝑗 −
𝑘𝑖𝑘𝑗

2𝑚
] 𝛿(𝑐𝑖, 𝑐𝑗)

where Q is modularity, Ai, j is the weight of the

edge between nodes vi and vj, ki and kj are the sum
of the weights of the edges attached to nodes vi

and vj, m is the sum of all of the edge weights in
the graph, ci and cj are the communities of nodes

vi and vj, and 𝛿is the Kronecker delta function,
which is defined as 1 if 𝑐𝑖 = 𝑐𝑗 and 0 otherwise.

However, the weakness of this algorithm arises
from this motivation: because the algorithm is
testing all possible combinations of communities
to find the most optimal modularity, the
algorithm trades increased accuracy for increased
calculation time. In order to combat this
inefficiency, the Louvain algorithm is often split
into two iterative processes.

The first step to maximize modularity efficiently
is to assign each node to its own community.

Afterwards, for each vi, the change in modularity
is found by removing vi into a neighboring

community of vj. This change in modularity can
be calculated using the following:

𝛥𝑄 = [
𝛴𝑖𝑛 + 2𝑘𝑖,𝑖𝑛

2𝑚
− (

𝛴𝑡𝑜𝑡 + 𝑘𝑖

2𝑚
)2] − [

𝛴𝑖𝑛

2𝑚

− (
𝛴𝑡𝑜𝑡

2𝑚
)2 − (

𝑘𝑖

2𝑚
)2]

where 𝛴𝑖𝑛is the sum of all the weights of the
edges inside the community that node vi is
moving into, 𝛴𝑡𝑜𝑡 is the sum of the weights of all

connection occurring in the new community, ki is

the weighted degree of vi, and ki, in is the sum of

the weights of the links between vi and the other
nodes in the community that vi is moving into.

Since Q is supposed to be maximized for the
most optimal representation of communities in a
network, a positive 𝛥𝑄 is desirable, as it

demonstrates that modularity has increased, thus
becoming more optimal. This calculation is
repeated until no increase in modularity can
occur, after which the second step can be used.

The second step is to build a new community
from the communities that were created from the
first step, where the weights of the new edges
between nodes are simply the sum of the weights
of edges between the communities. Essentially,
the communities are replaced by single nodes
that represent them. The iterative part of this
process arises from performing the first and
second step, in that order, repeatedly until the
optimal communities have been reached.

V. Evaluation

A. Device Specs

 The CPU on the computer that was used
is an Intel(R) Core(TM) i7-10750H CPU @
2.60GHz. The GPU is an NVIDIA GeForce RTX
2070 with Max-Q Design. The computer also
runs on Windows 10 and has 16.0 GB of
installed RAM. The language used to evaluate
these results was Python, and the IDE used is
Pyzo.

B. Data

Synthetic data would be used to emulate a
community as closely as possible. The first types
of graphs that were used all had 800 nodes, and a
number of edges ranging from 100 to 600. The
next graphs have 200 to 1,400 nodes, where the
number of edges is directly proportional to the
number of nodes. Finally, to test the effects of
using bridge and community detection, a graph
with 1,443 nodes and 897 edges was used. As
shown by Table 1, the results of the node
centrality algorithms seem to align with intuition.
Each of these graphs were randomly generated.

C. Evaluation of Node Centralities and
Proposed Methods
Figure 6 shows the time taken using each
method to calculate the node centrality of a
random graph with 800 nodes.

Figure 6

Looking at Figure 6, the differences in time
computed for each algorithm do not begin to show
until there are about 420 edges between the 800
nodes. Thus, a direct proportion will be used to
run trials on graphs with different amounts of
nodes; the ratio between edges and nodes will be
420:800. Although it is difficult to say whether this
would be the case in a real-world scenario, it is
expected that the density — the ratio of edges to
nodes  — would remain constant.

Figure 7

Figure 7 compares the time it takes to compute the
node centrality based on the ratio of edges to

nodes that was determined from Figure 6.
Generally, it can be seen that eigenvector centrality
takes the longest, while degree centrality takes the
shortest amount of time. In addition, these times
can be further improved by implementing the
concepts of bridge and community detection.

Figure 8

Figure 8 demonstrates the time taken to compute
the node centrality for each algorithm using
neither bridge nor community detection, bridge
detection only, and both bridge and community
detection. As shown in Figure 8, the time it takes
to compute these node centralities decreases,
sometimes by dramatic amounts, by
incorporating bridge and community detection.

VI. Conclusion and Future works

In summary, node centrality, as its names suggests,
measures the connectivity of a node to others. The
significance behind this concept is that the most
influential node can be determined from a given
graph, which can be used to represent any type of
network that appears in a society, including
communities in social media, analyzing business
interactions, and even modeling contact patterns
during an epidemic.

The proposed method of calculation for node
centrality (using bridge and community detection)
differentiates from simply calculating the node

centrality of the entire graph because of its
efficiency: bridge and community detection break
the graph into communities to calculate the node
centrality of these. Then, the node centralities of
each community are compared to determine the
most central nodes. As shown in Figure 8, the
incorporation of bridge and community detection
proved to be effective in cutting the calculation
time for all node centrality algorithms. The results
are especially noticeable when looking at
calculating the eigenvector centrality, as the time
has been cut from about 0.57 seconds to about
0.46 seconds with bridge detection alone. This
time was decreased even farther with the use of
community detection, dropping it down to an
astonishing 0.14 seconds.

In future works, the proposed model will further
consider the statistical properties of the graph in
order to make the analysis more accurate. In
addition to an improvement in accuracy, the
computation time would also be reduced in order
to make the model have tolerable time.

Reference

[1] X. Zhao, S. Guo, and Y. Wang, "The Node
Influence Analysis in Social Networks Based
on Structural Holes and Degree Centrality," in
IEEE International Conference on CSE and
IEEE International Conference on EUC,
2017, pp. 708-711.

[2] L. Lv, K. Zhang, T. Zhang, D. Bardou, J.
Zhang, and Y. Cai, "PageRank centrality for
temporal networks," in Physics Letters A, 2019,
pp. 1-8.

[3] E. Cohen, D. Delling, T. Pajor, and R. F.
Werneck, “Computing classic closeness
centrality, at scale,” in COSN, 2014, pp. 37–
50.

[4] Freeman, L.C., “A set of measures of
centrality based on betweeness”, Sociometry,
Vol. 40, pages 35-41, 1977.

[5] S. Gao, J. Ma, Z. Chen, G. Wang, C. Xing,
“Ranking the spreading ability of nodes in
complex networks based on local structure,”
in Physica A 403 (6), 2014, pp. 130–147.

[6] G. Sabidussi, “The centrality index of a
graph,” in Psychometrika 31 (4), 1966, pp.
581–603.

[7] L.C. Freeman, “Centrality in social
networks conceptual clarification,” in Soc.
Netw. 1 (3), 2008, pp. 215–239.

[8] Corradini, Enrico, “Defining and
detecting k-bridges in a social network: The
Yelp case, and more”in Knowledge-Based
Systems,Volume 195,2020, 105721

[9] Ghosh, Sayan, “Distributed Louvain
Algorithm for Graph Community Detection”
in 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS)
IPDPS Parallel and Distributed Processing
Symposium, 2018 IEEE International. :pp.
885-895 ,2018

[10] L. Page, S. Brin, R. Motwani, T.
Winogrand, “The Pagerank Citation Ranking:
Bringing Order to the Web,” in Technical
report, Stanford InfoLab, 1999,
http://ilpubs.stanford.edu:8090/422/.

[11] F. Cadini, E. Zio, and C. Petrescu, “Using
centrality measures to rank the importance of
the components of a complex network
infrastructure,” in CRITIS, 2008, pp. 155–
167.

http://ilpubs.stanford.edu:8090/422/

