
Applications of RSA, Digital Certificate,
SSS to Enable Multi-Level Decryption
and Private Key Sharing
Jaehyeon Yoon

Abstract
RSA, Digital Certificate, and SSS (Shamir's Secret Sharing) are some of the most widely used methods

of encrypting and decrypting data in current days. RSA encrypts and decrypts data using a

mathematical characteristic of prime numbers: it is extremely difficult to prime factorize large

numbers. Digital Certificate is the applied version of RSA and is used to prove one’s identification. In

addition, SSS encrypts and decrypts data using a characteristic of a polynomial graph: the only way to

model the exact graph is to know the coordinate values of the k+1 number of points on the graph

when it is in kth degree.

However, despite the simplicity in their mathematical mechanism, they come short in some aspects

which may be crucial for modern data encryption and decryption applications. For instance, Digital

Certificates cannot be used to validate digital identities of more than one person. Also the traditional

form of SSS is extremely inefficient as it requires a new complex encryption process to be performed

for every single piece of new data, especially when encrypting a long sentence or a large number.

This paper details the process in which the traditional RSA, SSS and digital certificate work. This

paper also will detail how the two major shortcomings of them were resolved as well as functioning

codes in which the two new implementations were tested of their functionality.

1. Introduction

Motivation

As modern technology evolves rapidly, the

frequency and the technology behind digital

frauds has evolved along with it. Therefore,

individuals’ digital identity and the security of it

is

at jeopardy. Currently, there are many ways of

protecting individuals’ digital identity through

data encryption. Some of them are RSA, Digital

Certificate and SSS (Shamir's Secret Sharing).

Although these methods have proven their

effectiveness over the past years, they still have

areas of improvements to fill. They are

inadequate and sometimes, incapable, for use

under some circumstances. For instance, to

encrypt a list of separate data with SSS, one

would have to go through a complicated

mathematical process to create a new polynomial

for every single data in the list. In other words, it

is a ‘single-use product’. Also, when encrypting a

large data, the math that needs to be done can be

extremely difficult and inefficient. Additionally,

current Digital Certificates are incapable of

validating more than one person’s digital identity

at once.

So, this research was conducted in order to

resolve the limitations of the traditional forms of

RSA, SSS and Digital Certificate. The new

implementation of Digital Certificate allows

more than one person to validate their digital

identity at once. The new implementation of

RSA and SSS allows a much more efficient

encryption and decryption process especially

when the data is large and/or separately listed.

Design of the Paper

Section 2 details the necessary background

knowledge on RSA, Shamir’s Secret Sharing,

Digital Certificate along with mathematical step

by step procedures proofs of each method.

Section 3 is about the implementation of RSA

and Digital Certificate which allows more than

one person to validate their digital identity.

Section 4 deals with the implementation of RSA

and SSS which allows people to obtain a private

key only when more than a certain number

decides to do so. In section 3 and 4, an actual

code that demonstrates such implementation is

included. The conclusion section will summarize

and wrap up the whole thing. Lastly, in the

appendix section, a code that demonstrates RSA

method is included.

2. Background

2.1 RSA

RSA, Riverst Shamir Adlemn, is one of the most

widely used methods of data encryption. It

involves a public key and a private key. The public

key is available to the public, hence the name.

Anyone can use it to encrypt data and send the

encrypted data to the individual who possesses a

paired private key. Since the decryption process

requires both the private and the public key, the

single person who has the private key will be able

to decrypt the data. Since the only person who

can encrypt the data is the person with the

private key, it is virtually impossible for anyone

else to ‘hi-jack’ the data. [1]

Step 1. Randomly generate two prime numbers: q

and p. Ex) q=31, p=17

Step 2. Compute N and φ(N).

Ex) N = q×p =527, φ(N) = (q-1)(p-1) = 480

[Lemma 2.1]

Let N = q×p. Then, φ(N) = Number of integers

less than N that is coprime with N = (q-1)(p-1)

[Proof 2.1]

1. Because N is a product of two prime numbers,

the only integers that are less than N and are not

in coprime with N have to have either q or p as

their factors.

2. There will be a ‘p’ number of integers that is

less than N that has q as their factor. 1*q, 2*q,

2*q

… p*q.

3. There will be an ‘q’ number of integers that is

less than N that has p as their factor. 1*p, 2*p,

3*p

… q*p.

4. Therefore, there will be ‘q+p -1’ number of

integers that are less than N and that are not in

coprime with N. Because q*p is counted twice,

one has to be cancelled out, hence the

subtraction of 1.

5. If there are q+1-1 numbers that are less than N

and that are not in coprime with it, the number

of integers that are less than N and ARE in

coprime is ‘qp - (q+p-1)’.

6. qp - (q+p-1) = qp - q - p +1 = (q-1)(p-1) ■

Step 3. Find an integer e, that is co-prime to φ(N)

and 3 < e < n-1. Ex) e = 7

Step 4. Calculate d. de ≡ 1(mod φ(N)) Ex) d =

343

(∵ 7*343 = 2401 = 1 mod(480))

Step 5. d = private key, e= public key

Step 6. Encryption

Use the formula C=me mod(N), where m is the

original ‘message’, e is the ‘public key’, and c is

the ‘encrypted message’. Ex) m = 123, C = 1237 =

30 (mod 527)

Step 7. Decryption

Use the formula m=Cd mod(N), where m is the

original ‘message’, C is the ‘encrypted message’,

and d is the ‘private key’ of the receiver. Ex) Cd =

30343 = 123 = m (mod 527)

[Proof 7.2] [2]

We want to prove that m=Cd mod(N)

Cd mon(n) = med mod(n) {from 6.1 C=me

mod(N) * d}

Euleor’s theorem: If m and n are coprime to each

other, mφ(n)+1= m mod (n) or mφ(n)= 1 mod (n)

mφ(n)+1= m(q-1)(p-1)+1 = m mod (n) {2.1, φ(N)

= (q-1)(p-1) }

med mod(n) = mkφ(n)+1 mod(n) = mkφ(n)m1

mod(n) = (mφ(n))km1 mod(n)

(mφ(n))km1 mod(n) = (1)km mod(n) = m mod(n)

■

RSA, though it is not the simplest method of

data encryption, it is used in VPNs, digital

communication channels, etc. Among them, RSA

serves to encrypt the users’ digital signatures, or

their digital identities, relating to the digital

certificate.

Figure 1: The simulation of RSA by C++. The

details can be found in the Appendix A.

Figure 1: The simulation of RSA by C++. The details can be found in the Appendix A.

1.2 Shamir’s Secret Sharing

Shamir’s Secret Sharing, often regarded as SSS, is

a method of encrypting data through separating

the data into n pieces. Such pieces only can

restore the initial data if K number of them are

available. (n>k) The mechanism works upon a

characteristic of polynomials: to complete a

polynomial of nth power, there has to be n+1

coordinate points. In other words, the initial

polynomial (nth power) can only be restored if

there are n+1 points on the cartesian coordinate

plane. Reversing the characteristic, we can obtain

the constant of the initial polynomial (nth power),

if there are n+1 coordinate points.

Step 1. Decide a number of ‘keys’ needed to

decrypt a data, or the value of ‘n’. Ex) n=5

Step 2. Decide a message and convert it into a

numerical value. The converted numerical value

will be

the constant term of the final function. (y

intercept) Ex) Message: “!” = 33 (ASCII

decimal value)

= (0,33)

Step 3. Randomly generate ‘n-1’ number of

points on the cartesian coordinate plane.

Ex) (1,2) (2,4) (7,8) (5,0)

Step 4. Form a polynomial of ‘n-1’th power that

hits all of the randomly generated points and the

coordinate for the secret numerical value, with

Lagrange Interpolation.

Ex) Randomly generated coordinate values: (1,2)

(2,4) (7,8) (5,0)

Secret numerical value: (0,33)

Interpolated polynomial:

Step 5. Randomly choose ‘n’ or more number of

coordinate points from the created polynomial

which will be the ‘keys’ used to remodel the

polynomial. However, the series of coordinate

values must not contain the coordinate value of

f(0) as it is the secret message itself.

Step 6 Decryption. If at least n number of ‘keys’

are available, the exact same polynomial can be

recreated with Lagrange Interpolation, thus the

constant term which is the ‘decrypted data’.

The minimum number of ‘keys’ that will be

required to obtain the initial polynomial and

thus the data can be determined through

fluctuating the degree of the power of the

polynomial: the value of ‘n’.

Much like other encryption methods, SSS is

highly useful in encrypting data with high

sensitivity and importance.

For instance, a nuclear missile launch code would

not be safe to only have a single person deciding

whether or not to launch a nuclear missile. In

such a case, SSS can be implemented as there

would have to be at least ‘n’ number of people

agreeing to the launch, making the process much

safer than just having a single person to launch

the missile. On top of that, it can be

implemented in voting procedures as well.

If there has to be at least ‘k’ number of votes in

order for someone to be elected, a polynomial of

‘k-1’th power that has a constant term that

indicates the fact that the person was elected can

be designed. As per the SSS algorithm, the only

way for the person to be elected, or to have the

indication that the person is elected, is to have at

least ‘k’ number of people to vote for the person

which would prevent electoral fraud. [3]

Digital Certificate

Digital certificates are an applied version of RSA

and are used to authenticate digital signatures.

When the sender, who encrypts a data with their

private key, sends the encrypted data to the

receiver, who decrypts the data using the sender’s

private key, their digital identity can be validated

if the decrypted data corresponds to the original

data prior to the encryption.

This works upon the same logic as the RSA

method, just reversed. For RSA, the sender will

encrypt the data using the public key and the

actual data, then the receiver will decrypt the data

using the private key. For the case of a digital

certificate, the sender encrypts and sends the data

using their private key, then, the receiver decrypts

it using the sender’s public key.

Step 1: Generate the value of N, the private key,

and the public key. For simplicity, the value of N,

the private key and the public key from the RSA

section will be used for example. Refer to the

procedure of generating the keys above.

Ex) Public key: 343 Private Key: 7 N: 527

Step 2: Convert a message into a numerical value.

Ex) Message: “A” Numerical value: 65 (ASCII

decimal value)

Step 3 Encryption: The sender encrypts the

converted message using the formula C=md

mod(N). Within the formula, C represents the

encrypted message, m represents the original

message, and d represents the sender’s private key.

Then, the sender sends the original message, the

encrypted message and the sender’s public key to

the receiver.

Ex) The encrypted message: C= 657 mod (N) =

657 mod (527)= 482

Step 4 Decryption: When the receiver decrypts

the encrypted message that the sender sent with

the formula m=Cd mod(N), if the decrypted

message corresponds to the original message that

the sender sent, the receiver can validate the

sender’s digital identity. Within the formula, m

represents the decrypted message, C represents

the encrypted message, and d represents the

sender’s public key.

Ex) m= 482343 mod(N) = 482343 mod(527) =

65

3 Problem-1: More than one person cannot

validate their digital identity.

Problem statement: All of the ‘k’ number of

people need to sign their signatures in order to

validate a contract. (k>1) However, a pandemic

has forced them to send their digital signatures

online. How can they guarantee that each others’

digital signatures are authentic and are not from

possible hackers?

The initial idea:

1. Let the data be ‘m’

2. Encrypt the data ‘m’ with person 1’s private

key (d1) -> md1

3. Encrypt the already-encrypted data with person

2’s private key(d2) -> md1*d2

4. Decrypt the data using both person’s public

keys and check if the data corresponds, thus

proving both person 1 and person 2’s identity.

The initial idea had an error when it was

executed. For instance, person 2 would not be

able to know the original data as it was encrypted

with person 1’s private key prior to person 2’s

encryption. So, the following is the second

iteration that resolved such an error.

The second idea:

1. A program will generate a set of public and

private keys, in which the sum of d1 and d2

equals d. Ex) Public key: e=7, Private key:

d=343, Message: m=123

d1 = 300, d2 = 43

2. Person 1 would encrypt the data ‘m’ using ‘d1’.

Ex) md1 = 123300 = 1 mod(527)

3. Person 2 would encrypt the data ‘m’ using ‘d2’.

Ex) md2 = 12343 = 30 mod(527)

4. The two encrypted ‘m’ would be multiplied

and form a final encrypted data.

Ex) md1*md1=md1+d2=md = 30 mod(527)

5. The final data can be decrypted using the

generated public key.

Ex) m=Ce=307=123 mod(n)

The C++ implementation of Problem1 can be

found in the Appendix B.

 Figure 2: The simulation of Problem by C++.

The details can be found in the Appendix B.

4. Problem 2: Large data needed to be

decrypted only when at least N out of K

number of people agree.

Problem statement: A founder of a company is

trying to encrypt the company’s classified

information, so that the information can be

obtained only when ‘n’ out of ‘k’ number of

executives agree. The founder decides to use SSS

to encrypt the information only to realize that

when the information is turned into a numerical

value, it is astronomically large which will be

highly inefficient when SSS is used to encrypt

and decrypt it. Also, the information was in the

form of a list (‘x’ number of elements in the list),

meaning that the founder needed to model ‘x’

number of distinct polynomials according to the

SSS algorithm for each of the separately listed

information which is even more inefficient. How

can the founder use SSS to encrypt a large

and/or separately listed data efficiently? Also,

how can the executives decrypt the encrypted

data with such a method?

Initial idea:

1. A public key is generated from two prime

numbers: ‘a’ and ‘b’. Using the public key, a data

is encrypted.

2. Generate two Polynomials of n-1th power that

each has a constant of ‘a’ and ‘b’. The two

polynomials need to be intersected at ‘n’ number

of points.

3. Both constants of the two polynomials can be

found when all of the ‘n’ number of intersections

are gathered.

4. Following the RSA private and public key

generation algorithm that was mentioned above,

use the two prime numbers ‘a’ and ‘b’ to generate

the private that pairs with the public key that was

used to encrypt the data beforehand.

5. Decrypt the data using the generated private

key, thus obtaining the company’s classified

information.

Second idea:

1. Randomly generate ‘n-1’ number of points on

the cartesian coordinate plane.

Ex) (5,1) (5,2) (-3,4) (2,0)

2. Form a polynomial of ‘n-1’th power that hits

all of the randomly generated points and has a

constant term of a private key.

Ex) Randomly generated coordinate values: (5,1)

(4,2) (-3,4) (2,0)

Private key: (0,343)

Interpolated polynomial:

3. Randomly choose ‘n’ or more number of

coordinate points from the created polynomial

which will be the ‘keys’ used to remodel the

polynomial. However, the series of coordinate

values must not contain the coordinate value of

f(0) as it is the private key itself.

4. If at least ‘n’ number of ‘keys’ are

available, the exact same polynomial can be

recreated with Lagrange Interpolation, thus the

constant term which is the private key.

5. The found private key can be used to decrypt

data that was encrypted with its corresponding

public key, following the traditional RSA

algorithm.

The C++ implementation of Problem 2 can be

found in the Appendix C.

Figure 3: The simulation of Problem by C++. The

details can be found in the Appendix C.

5 Conclusion

RSA, SSS, and Digital Certificate are some of the

most widely used methods of data encryption and

decryption due to the simple yet effective

mathematical mechanisms that drive them.

However, they are not applicable under every

condition. For instance, when more than one

person is trying to validate their digital identity,

Digital Certificate is incapable of doing so. Also,

traditional forms of SSS can be extremely

inefficient when a list of data has to be encrypted

and decrypted individually

Throughout the paper, such shortcomings were

resolved through clever alteration of RSA, SSS

and Digital certificate. To allow for more than

one person to validate their digital identity using

Digital Certificate, a property of exponent was

implemented. Moreover, the advantageous

characteristics of RSA and SSS were combined to

allow for the encryption to last for as many times

as it is required to: SSS with the alteration

doesn’t have to be a ‘single-use product’.

As the codes below show, the altered version of

RSA, SSS, and Digital Certificate are not just

theoretical ideas. They are functional methods of

data encryption that are not only more efficient

but also capable of encrypting data under

unexpected but plausible circumstances. For

these reasons, it would be captivating to see them

being developed further and implemented into

real-life applications.

References

[1] Josh Lake, Comparitech, “What is RSA

encryption and how does it work?”

URL:

https://www.comparitech.com/blog/information

-security/rsa-encryption/

[2] Margaret Rouse, TechTarger, “RSA algorithm

(Rivest-Shamir-Adleman)”

URL:

https://searchsecurity.techtarget.com/definition/

RSA

[3] Adi Shamir, Massachusetts Institute of

Technology, “How to Share a Secret”

URL:

https://cs.jhu.edu/~sdoshi/crypto/papers/sham

irturing.pdf

Appendix A. C++ implementation of RSA

class RSA_ENTRY
{
public:
long long d, e, N; string s;
RSA_ENTRY() {
srand(time(0));
printf("Step 1. Randomly generate two prime
numbers\n");
long long p = pickRandomPrime(); long long q =
pickRandomPrime(); printf("p: %lld\n", p);
printf("q: %lld\n", q);
printf("\nStep 2. Compute N and ?(N)\n"); N =
p*q;
long long phiN = (p-1)*(q-1); printf("N: %lld\n",
N);
printf("phiN: %lld\n", phiN);

printf("\nStep 3. Find an integer e, that is co-
prime to ?(N) and 3 < e < n-1\n");
e = coprimeWith(phiN, N); printf("e: %lld\n", e);
printf("\nStep 4. Calculate d.
de ??1(mod ?(N))\n"); d = findInverse(e, phiN);
printf("d: %lld\n", d);

printf("\nStep 5. d = private key, e = public
key\n");
printf("Please Enter your Message m: "); getline(cin,
s);
}
vector<long long> Encrypt() {

printf("\nEncryption\n");
printf("Original Message\n");
for (int i=0; i<s.size(); ++i) { printf("%4c", s[i]);
}
printf("\n");
for (int i=0; i<s.size(); ++i) { printf("%4d", s[i]);
}
printf("\n\nAfter Encryption\n");
vector<long long> encrypt(s.size());
for (int i=0; i<s.size(); ++i) {
encrypt[i] = myPow(s[i], e, N);
printf("%lld ", encrypt[i]);
}
return encrypt;
}

vector<long long> Decrypt(vector<long long>
encrypt){ printf("\n\nDecryption\n");
vector<long long> decrypt(encrypt.size());
for (int i=0; i<decrypt.size(); ++i) {
decrypt[i] = myPow(encrypt[i], d, N); printf("%4lld
", decrypt[i]);
}
printf("\nDecrypted message:\n");
for (int i=0; i<decrypt.size(); ++i) { printf("%4c ",
decrypt[i]);
}
return decrypt;
}

Appendix B. C++ implementation of Problem1
(multi level RSA)

void Problem1(RSA_ENTRY* rsa)
{ printf("\n\n====================Problem1
===================\n");
printf("\nStep 1. Set d1 and d2:\n");
long long d1 = rand()%(rsa->e), d2 = (rsa->e)-d1;
printf("d1: %lld d2:%lld\n", d1, d2);
printf("\nStep 2. Encrypt using d1\n"); rsa->e =
d1;
auto e1 = rsa->Encrypt();

printf("\n\nStep 3. Encrypt using d2\n"); rsa->e
= d2;
auto e2 = rsa->Encrypt();

printf("\n\nStep 4. Final encrypted data\n");
vector<long long> e;
for (int i=0; i<e1.size(); i++)
{ e.push_back((e1[i]*e2[i])%(rsa->N));
printf("%4lld ", e[i]);
}

printf("\n\nStep 5. Final decrypted data"); rsa-
>Decrypt(e);
}

Appendix C. C++ implementation of Problem2
(Private Key Sharing)

double lagrangesInterpolate(pair<long long, long
long> f[], int xi, int n)
{
double result = 0;
for (int i=0; i<n; i++)
{
double term = f[i].second;
for (int j=0;j<n;j++)
{
if (j!=i)
term = term*(xi - f[j].first)/double(f[i].first -
f[j].first);
}

result += term;
}
return result;
}
void Problem2(RSA_ENTRY* rsa) {
int K = 3;
long long x2_coeff = rand()%10002+1, x_coeff =
rand()%10002+1, constant = rsa->d;
printf("\n\n====================Problem2=
==================\n");
printf("\n\nStep 1. Set f(x) as k-1th order
polynomial\n"); printf("f(x) = %lldx^2 + %lldx
+ %lld\n", x2_coeff, x_coeff, constant);
pair<long long, long long> f[] = {
{1,x2_coeff*(1) + x_coeff*(1) + constant},
{2,x2_coeff*(2) + x_coeff*(2) + constant},
{3,x2_coeff*(3) + x_coeff*(3) + constant}
};
printf("\n\nStep 2. Pick k points\n");
for (int i=0; i<3; i++) {
printf("%d: (%lld, %lld)\n", i+1, f[i].first,
f[i].second);
}
printf("\n\nStep 3. Restore private key using
lagranges interpolation\n"); cout << (long
long)lagrangesInterpolate(f, 0, 2);
}
Appendix D. C++ implementation of helper
functions

// Return whether num is prime or not
bool isPrime(long long num)
{
for (long long i=2; i*i<=num; i++)
{
if (num%i==0) return false;
}
return true;
}
// Return whether a and b is coprime or not
bool isCoprime(long long a, long long b)
{

for (long long i=2; i<=min(a, b); i++)
{
if (a%i==0 && b%i==0) return false;
}
return true;
}
// Pick a random prime number between
2~10002
long long pickRandomPrime()
{
while(1)
{
int randomNumber = rand()%10000+2;
if (isPrime(randomNumber)) return
randomNumber;
}
}

// Return a random number that is coprime with
phiN within a range of 4~N-1
long long coprimeWith(long long phiN, long
long N)
{
while(1)
{
long long randomNumber = rand()%(N-1);
if (randomNumber<=3) continue;

if (isCoprime(randomNumber, phiN))
return randomNumber;
}
}

// Find a modular multiplicative inverse of e in
mod phiN
long long findInverse(long long e, long long phiN)
{
int i = 1;

while(1)

{
if (i*e%phiN != 1)
{
i = i+1;
}
else
{
return i;
}
}
}

// return a^b (mod phiN)
long long myPow(long long a, long long b, long
long phiN) {
long long ret = 1;
for (int i=0; i<b; i++)
{
ret *= a;
ret %= phiN;
}
return ret;
}

