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Abstract
RSA, Digital Certificate, and SSS (Shamir's Secret Sharing) are some of the most widely used methods 

of encrypting and decrypting data in current days. RSA encrypts and decrypts data using a 

mathematical characteristic of prime numbers: it is extremely difficult to prime factorize large 

numbers. Digital Certificate is the applied version of RSA and is used to prove one’s identification. In 

addition, SSS encrypts and decrypts data using a characteristic of a polynomial graph: the only way to 

model the exact graph is to know the coordinate values of the k+1 number of points on the graph 

when it is in kth degree.

However, despite the simplicity in their mathematical mechanism, they come short in some aspects 

which may be crucial for modern data encryption and decryption applications. For instance, Digital 

Certificates cannot be used to validate digital identities of more than one person. Also the traditional 

form of SSS is extremely inefficient as it requires a new complex encryption process to be performed 

for every single piece of new data, especially when encrypting a long sentence or a large number.

This paper details the process in which the traditional RSA, SSS and digital certificate work. This 

paper also will detail how the two major shortcomings of them were resolved as well as functioning 

codes in which the two new implementations were tested of their functionality.

1. Introduction

Motivation

As modern technology evolves rapidly, the 

frequency and the technology behind digital 

frauds has evolved along with it. Therefore, 

individuals’ digital identity and the security of it 

is 

at jeopardy. Currently, there are many ways of 

protecting individuals’ digital identity through 



data encryption. Some of them are RSA, Digital 

Certificate and SSS (Shamir's Secret Sharing).

Although these methods have proven their 

effectiveness over the past years, they still have 

areas of improvements to fill. They are 

inadequate and sometimes, incapable, for use 

under some circumstances. For instance, to 

encrypt a list of separate data with SSS, one 

would have to go through a complicated 

mathematical process to create a new polynomial 

for every single data in the list. In other words, it 

is a ‘single-use product’. Also, when encrypting a 

large data, the math that needs to be done can be 

extremely difficult and inefficient. Additionally, 

current Digital Certificates are incapable of 

validating more than one person’s digital identity 

at once.

So, this research was conducted in order to 

resolve the limitations of the traditional forms of 

RSA, SSS and Digital Certificate. The new 

implementation of Digital Certificate allows 

more than one person to validate their digital 

identity at once. The new implementation of 

RSA and SSS allows a much more efficient 

encryption and decryption process especially 

when the data is large and/or separately listed.

Design of the Paper

Section 2 details the necessary background 

knowledge on RSA, Shamir’s Secret Sharing, 

Digital Certificate along with mathematical step 

by step procedures proofs of each method. 

Section 3 is about the implementation of RSA 

and Digital Certificate which allows more than 

one person to validate their digital identity. 

Section 4 deals with the implementation of RSA 

and SSS which allows people to obtain a private 

key only when more than a certain number 

decides to do so. In section 3 and 4, an actual 

code that demonstrates such implementation is 

included. The conclusion section will summarize 

and wrap up the whole thing. Lastly, in the 

appendix section, a code that demonstrates RSA 

method is included.

2. Background

2.1 RSA

RSA, Riverst Shamir Adlemn, is one of the most 

widely used methods of data encryption. It 

involves a public key and a private key. The public 

key is available to the public, hence the name. 

Anyone can use it to encrypt data and send the 

encrypted data to the individual who possesses a 

paired private key. Since the decryption process 

requires both the private and the public key, the 

single person who has the private key will be able 

to decrypt the data. Since the only person who 

can encrypt the data is the person with the 

private key, it is virtually impossible for anyone 

else to ‘hi-jack’ the data. [1]

Step 1. Randomly generate two prime numbers: q 

and p. Ex) q=31, p=17

Step 2. Compute N and φ(N). 

Ex) N = q×p =527, φ(N) = (q-1)(p-1) = 480



[Lemma 2.1]

Let N = q×p. Then, φ(N) = Number of integers 

less than N that is coprime with N = (q-1)(p-1)

[Proof 2.1]

1. Because N is a product of two prime numbers, 

the only integers that are less than N and are not 

in coprime with N have to have either q or p as 

their factors.

2. There will be a ‘p’ number of integers that is 

less than N that has q as their factor. 1*q, 2*q, 

2*q

… p*q.

3. There will be an ‘q’ number of integers that is 

less than N that has p as their factor. 1*p, 2*p, 

3*p

… q*p.

4. Therefore, there will be ‘q+p -1’ number of 

integers that are less than N and that are not in 

coprime with N. Because q*p is counted twice, 

one has to be cancelled out, hence the 

subtraction of 1.

5. If there are q+1-1 numbers that are less than N 

and that are not in coprime with it, the number 

of integers that are less than N and ARE in 

coprime is ‘qp - (q+p-1)’.

6. qp - (q+p-1) = qp - q - p +1 = (q-1)(p-1) ■

Step 3. Find an integer e, that is co-prime to φ(N) 

and 3 < e < n-1. Ex) e = 7 

Step 4. Calculate d. de ≡ 1(mod φ(N)) Ex) d = 

343

(∵ 7*343 = 2401 = 1 mod(480))

Step 5. d = private key, e= public key

Step 6. Encryption

Use the formula C=me mod(N), where m is the 

original ‘message’, e is the ‘public key’, and c is 

the ‘encrypted message’. Ex) m = 123, C = 1237 = 

30 (mod 527)

Step 7. Decryption

Use the formula m=Cd mod(N), where m is the 

original ‘message’, C is the ‘encrypted message’, 

and d is the ‘private key’ of the receiver. Ex) Cd = 

30343 = 123 = m (mod 527)

[Proof 7.2] [2]

We want to prove that m=Cd mod(N)

Cd mon(n) = med mod(n) {from 6.1 C=me 

mod(N) * d}

Euleor’s theorem: If m and n are coprime to each 

other, mφ(n)+1= m mod (n) or mφ(n)= 1 mod (n)

mφ(n)+1= m(q-1)(p-1)+1 = m mod (n) {2.1, φ(N) 

= (q-1)(p-1) }

med mod(n) = mkφ(n)+1 mod(n) = mkφ(n)m1 

mod(n) = (mφ(n))km1 mod(n)

(mφ(n))km1 mod(n) = (1)km mod(n) = m mod(n) 

■

RSA, though it is not the simplest method of 

data encryption, it is used in VPNs, digital 



communication channels, etc. Among them, RSA 

serves to encrypt the users’ digital signatures, or 

their digital identities, relating to the digital 

certificate.

Figure 1: The simulation of RSA by C++. The 

details can be found in the Appendix A.

 

Figure 1: The simulation of RSA by C++. The details can be found in the Appendix A.

1.2 Shamir’s Secret Sharing

Shamir’s Secret Sharing, often regarded as SSS, is 

a method of encrypting data through separating 

the data into n pieces. Such pieces only can 

restore the initial data if K number of them are 

available. (n>k) The mechanism works upon a 

characteristic of polynomials: to complete a 

polynomial of nth power, there has to be n+1 

coordinate points. In other words, the initial 

polynomial (nth power) can only be restored if 

there are n+1 points on the cartesian coordinate 

plane. Reversing the characteristic, we can obtain 

the constant of the initial polynomial (nth power), 

if there are n+1 coordinate points.

Step 1. Decide a number of ‘keys’ needed to 

decrypt a data, or the value of ‘n’. Ex) n=5 

Step 2. Decide a message and convert it into a 

numerical value. The converted numerical value 

will be

the constant term of the final function. (y 

intercept) Ex) Message: “!” = 33 (ASCII 

decimal value)

= (0,33)

Step 3. Randomly generate ‘n-1’ number of 

points on the cartesian coordinate plane.

Ex) (1,2) (2,4) (7,8) (5,0)



Step 4. Form a polynomial of ‘n-1’th power that 

hits all of the randomly generated points and the 

coordinate for the secret numerical value, with 

Lagrange Interpolation.

Ex) Randomly generated coordinate values: (1,2) 

(2,4) (7,8) (5,0)

Secret numerical value: (0,33) 

Interpolated polynomial:  

Step 5. Randomly choose ‘n’ or more number of 

coordinate points from the created polynomial 

which will be the ‘keys’ used to remodel the 

polynomial. However, the series of coordinate 

values must not contain the coordinate value of 

f(0) as it is the secret message itself.

Step 6 Decryption. If at least n number of ‘keys’ 

are available, the exact same polynomial can be 

recreated with Lagrange Interpolation, thus the 

constant term which is the ‘decrypted data’.

The minimum number of ‘keys’ that will be 

required to obtain the initial polynomial and 

thus the data can be determined through 

fluctuating the degree of the power of the 

polynomial: the value of ‘n’.

Much like other encryption methods, SSS is 

highly useful in encrypting data with high 

sensitivity and importance.

 

For instance, a nuclear missile launch code would 

not be safe to only have a single person deciding 

whether or not to launch a nuclear missile. In 

such a case, SSS can be implemented as there 

would have to be at least ‘n’ number of people 

agreeing to the launch, making the process much 

safer than just having a single person to launch 

the missile. On top of that, it can be 

implemented in voting procedures as well.

If there has to be at least ‘k’ number of votes in 

order for someone to be elected, a polynomial of 

‘k-1’th power that has a constant term that 

indicates the fact that the person was elected can 

be designed. As per the SSS algorithm, the only 

way for the person to be elected, or to have the 

indication that the person is elected, is to have at 

least ‘k’ number of people to vote for the person 

which would prevent electoral fraud. [3]

Digital Certificate

Digital certificates are an applied version of RSA 

and are used to authenticate digital signatures. 

When the sender, who encrypts a data with their 

private key, sends the encrypted data to the 

receiver, who decrypts the data using the sender’s 

private key, their digital identity can be validated 

if the decrypted data corresponds to the original 

data prior to the encryption.

This works upon the same logic as the RSA 

method, just reversed. For RSA, the sender will 

encrypt the data using the public key and the 

actual data, then the receiver will decrypt the data 



using the private key. For the case of a digital 

certificate, the sender encrypts and sends the data 

using their private key, then, the receiver decrypts 

it using the sender’s public key.

Step 1: Generate the value of N, the private key, 

and the public key. For simplicity, the value of N, 

the private key and the public key from the RSA 

section will be used for example. Refer to the 

procedure of generating the keys above.

Ex) Public key: 343 Private Key: 7 N: 527

 

Step 2: Convert a message into a numerical value.

 

Ex) Message: “A” Numerical value: 65 (ASCII 

decimal value)

 

Step 3 Encryption: The sender encrypts the 

converted message using the formula C=md 

mod(N). Within the formula, C represents the 

encrypted message, m represents the original 

message, and d represents the sender’s private key. 

Then, the sender sends the original message, the 

encrypted message and the sender’s public key to 

the receiver.

Ex) The encrypted message: C= 657 mod (N) = 

657 mod (527)= 482

Step 4 Decryption: When the receiver decrypts 

the encrypted message that the sender sent with 

the formula m=Cd mod(N), if the decrypted 

message corresponds to the original message that 

the sender sent, the receiver can validate the 

sender’s digital identity. Within the formula, m 

represents the decrypted message, C represents 

the encrypted message, and d represents the 

sender’s public key.

Ex) m= 482343 mod(N) = 482343 mod(527) = 

65

3 Problem-1: More than one person cannot 

validate their digital identity.

Problem statement: All of the ‘k’ number of 

people need to sign their signatures in order to 

validate a contract. (k>1) However, a pandemic 

has forced them to send their digital signatures 

online. How can they guarantee that each others’ 

digital signatures are authentic and are not from 

possible hackers?

The initial idea:

1. Let the data be ‘m’

2. Encrypt the data ‘m’ with person 1’s private 

key (d1) -> md1

3. Encrypt the already-encrypted data with person 

2’s private key(d2) -> md1*d2

4. Decrypt the data using both person’s public 

keys and check if the data corresponds, thus 

proving both person 1 and person 2’s identity.



The initial idea had an error when it was 

executed. For instance, person 2 would not be 

able to know the original data as it was encrypted 

with person 1’s private key prior to person 2’s 

encryption. So, the following is the second 

iteration that resolved such an error.

The second idea:

1. A program will generate a set of public and 

private keys, in which the sum of d1 and d2 

equals d. Ex) Public key: e=7, Private key: 

d=343, Message: m=123

d1 = 300, d2 = 43

2. Person 1 would encrypt the data ‘m’ using ‘d1’.

Ex) md1 = 123300 = 1 mod(527)

3. Person 2 would encrypt the data ‘m’ using ‘d2’.

Ex) md2 = 12343 = 30 mod(527)

4. The two encrypted ‘m’ would be multiplied 

and form a final encrypted data.

Ex) md1*md1=md1+d2=md = 30 mod(527)

5. The final data can be decrypted using the 

generated public key.

Ex) m=Ce=307=123 mod(n)

The C++ implementation of Problem1 can be 

found in the Appendix B.

 Figure 2: The simulation of Problem by C++. 

The details can be found in the Appendix B.

4. Problem 2: Large data needed to be 

decrypted only when at least N out of K 

number of people agree.

Problem statement: A founder of a company is 

trying to encrypt the company’s classified 

information, so that the information can be 

obtained only when ‘n’ out of ‘k’ number of 

executives agree. The founder decides to use SSS 

to encrypt the information only to realize that 

when the information is turned into a numerical 

value, it is astronomically large which will be 

highly inefficient when SSS is used to encrypt 

and decrypt it. Also, the information was in the 

form of a list (‘x’ number of elements in the list), 

meaning that the founder needed to model ‘x’ 



number of distinct polynomials according to the 

SSS algorithm for each of the separately listed 

information which is even more inefficient. How 

can the founder use SSS to encrypt a large 

and/or separately listed data efficiently? Also, 

how can the executives decrypt the encrypted 

data with such a method?

Initial idea:

1. A public key is generated from two prime 

numbers: ‘a’ and ‘b’. Using the public key, a data 

is encrypted.

2. Generate two Polynomials of n-1th power that 

each has a constant of ‘a’ and ‘b’. The two 

polynomials need to be intersected at ‘n’ number 

of points.

3. Both constants of the two polynomials can be 

found when all of the ‘n’ number of intersections 

are gathered.

4. Following the RSA private and public key 

generation algorithm that was mentioned above, 

use the two prime numbers ‘a’ and ‘b’ to generate 

the private that pairs with the public key that was 

used to encrypt the data beforehand.

5. Decrypt the data using the generated private 

key, thus obtaining the company’s classified 

information.

Second idea:

1. Randomly generate ‘n-1’ number of points on 

the cartesian coordinate plane.

Ex) (5,1) (5,2) (-3,4) (2,0)

2. Form a polynomial of ‘n-1’th power that hits 

all of the randomly generated points and has a 

constant term of a private key.

Ex) Randomly generated coordinate values: (5,1) 

(4,2) (-3,4) (2,0)

Private key: (0,343)

Interpolated polynomial:

3. Randomly choose ‘n’ or more number of 

coordinate points from the created polynomial 

which will be the ‘keys’ used to remodel the 

polynomial. However, the series of coordinate 

values must not contain the coordinate value of 

f(0) as it is the private key itself.

4. If at least ‘n’ number of ‘keys’ are 

available, the exact same polynomial can be 

recreated with Lagrange Interpolation, thus the 

constant term which is the private key.

5. The found private key can be used to decrypt 

data that was encrypted with its corresponding 

public key, following the traditional RSA 

algorithm.



The C++ implementation of Problem 2 can be 

found in the Appendix C.

Figure 3: The simulation of Problem by C++. The 

details can be found in the Appendix C.

5 Conclusion

RSA, SSS, and Digital Certificate are some of the 

most widely used methods of data encryption and 

decryption due to the simple yet effective 

mathematical mechanisms that drive them. 

However, they are not applicable under every 

condition. For instance, when more than one 

person is trying to validate their digital identity, 

Digital Certificate is incapable of doing so. Also, 

traditional forms of SSS can be extremely 

inefficient when a list of data has to be encrypted 

and decrypted individually

Throughout the paper, such shortcomings were 

resolved through clever alteration of RSA, SSS 

and Digital certificate. To allow for more than 

one person to validate their digital identity using 

Digital Certificate, a property of exponent was 

implemented. Moreover, the advantageous 

characteristics of RSA and SSS were combined to 

allow for the encryption to last for as many times 

as it is required to: SSS with the alteration 

doesn’t have to be a ‘single-use product’.

As the codes below show, the altered version of 

RSA, SSS, and Digital Certificate are not just 

theoretical ideas. They are functional methods of 

data encryption that are not only more efficient 

but also capable of encrypting data under 

unexpected but plausible circumstances. For 

these reasons, it would be captivating to see them 

being developed further and implemented into 

real-life applications.
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Appendix A. C++ implementation of RSA

class RSA_ENTRY
{
public:
long long d, e, N; string s;
RSA_ENTRY() {
srand(time(0));
printf("Step 1. Randomly generate two prime 
numbers\n");
long long p = pickRandomPrime(); long long q = 
pickRandomPrime(); printf("p: %lld\n", p);
printf("q: %lld\n", q);
printf("\nStep 2. Compute N and ?(N)\n"); N = 
p*q;
long long phiN = (p-1)*(q-1); printf("N: %lld\n", 
N);
printf("phiN: %lld\n", phiN);

printf("\nStep 3. Find an integer e, that is co-
prime to ?(N) and 3 < e < n-1\n");
e = coprimeWith(phiN, N); printf("e: %lld\n", e);
printf("\nStep 4. Calculate d. 
de ??1(mod ?(N))\n"); d = findInverse(e, phiN);
printf("d: %lld\n", d);

printf("\nStep 5. d = private key, e = public 
key\n");
printf("Please Enter your Message m: "); getline(cin, 
s);
}
vector<long long> Encrypt() {

printf("\nEncryption\n");
printf("Original Message\n");
for (int i=0; i<s.size(); ++i) { printf("%4c", s[i]);
}
printf("\n");
for (int i=0; i<s.size(); ++i) { printf("%4d", s[i]);
}
printf("\n\nAfter Encryption\n");
vector<long long> encrypt(s.size());
for (int i=0; i<s.size(); ++i) {
encrypt[i] = myPow(s[i], e, N);
printf("%lld ", encrypt[i]);
}
return encrypt;
}



vector<long long> Decrypt(vector<long long> 
encrypt){ printf("\n\nDecryption\n");
vector<long long> decrypt(encrypt.size());
for (int i=0; i<decrypt.size(); ++i) {
decrypt[i] = myPow(encrypt[i], d, N); printf("%4lld 
", decrypt[i]);
}
printf("\nDecrypted message:\n");
for (int i=0; i<decrypt.size(); ++i) { printf("%4c ", 
decrypt[i]);
}
return decrypt;
}

Appendix B. C++ implementation of Problem1 
(multi level RSA)

void Problem1(RSA_ENTRY* rsa) 
{ printf("\n\n====================Problem1
===================\n");
printf("\nStep 1. Set d1 and d2:\n");
long long d1 = rand()%(rsa->e), d2 = (rsa->e)-d1; 
printf("d1: %lld d2:%lld\n", d1, d2);
printf("\nStep 2. Encrypt using d1\n"); rsa->e = 
d1;
auto e1 = rsa->Encrypt();

printf("\n\nStep 3. Encrypt using d2\n"); rsa->e 
= d2;
auto e2 = rsa->Encrypt();

printf("\n\nStep 4. Final encrypted data\n"); 
vector<long long> e;
for (int i=0; i<e1.size(); i++) 
{ e.push_back((e1[i]*e2[i])%(rsa->N)); 
printf("%4lld ", e[i]);
}

printf("\n\nStep 5. Final decrypted data"); rsa-
>Decrypt(e);
}

Appendix C. C++ implementation of Problem2 
(Private Key Sharing)

double lagrangesInterpolate(pair<long long, long 
long> f[], int xi, int n)
{
double result = 0;
for (int i=0; i<n; i++)
{
double term = f[i].second;
for (int j=0;j<n;j++)
{
if (j!=i)
term = term*(xi - f[j].first)/double(f[i].first - 
f[j].first);
}



result += term;
}
return result;
}
void Problem2(RSA_ENTRY* rsa) {
int K = 3;
long long x2_coeff = rand()%10002+1, x_coeff = 
rand()%10002+1, constant = rsa->d; 
printf("\n\n====================Problem2=
==================\n");
printf("\n\nStep 1. Set f(x) as k-1th order 
polynomial\n"); printf("f(x) = %lldx^2 + %lldx 
+ %lld\n", x2_coeff, x_coeff, constant);
pair<long long, long long> f[] = {
{1,x2_coeff*(1) + x_coeff*(1) + constant},
{2,x2_coeff*(2) + x_coeff*(2) + constant},
{3,x2_coeff*(3) + x_coeff*(3) + constant}
};
printf("\n\nStep 2. Pick k points\n");
for (int i=0; i<3; i++) {
printf("%d: (%lld, %lld)\n", i+1, f[i].first, 
f[i].second);
}
printf("\n\nStep 3. Restore private key using 
lagranges interpolation\n"); cout << (long 
long)lagrangesInterpolate(f, 0, 2);
}
Appendix D. C++ implementation of helper 
functions

// Return whether num is prime or not
bool isPrime(long long num)
{
for (long long i=2; i*i<=num; i++)
{
if (num%i==0) return false;
}
return true;
}
// Return whether a and b is coprime or not
bool isCoprime(long long a, long long b)
{

for (long long i=2; i<=min(a, b); i++)
{
if (a%i==0 && b%i==0) return false;
}
return true;
}
// Pick a random prime number between 
2~10002
long long pickRandomPrime()
{
while(1)
{
int randomNumber = rand()%10000+2;
if (isPrime(randomNumber)) return 
randomNumber;
}
}

// Return a random number that is coprime with 
phiN within a range of 4~N-1
long long coprimeWith(long long phiN, long 
long N)
{
while(1)
{
long long randomNumber = rand()%(N-1);
if (randomNumber<=3) continue;

if (isCoprime(randomNumber, phiN))
return randomNumber;
}
}

// Find a modular multiplicative inverse of e in 
mod phiN
long long findInverse(long long e, long long phiN)
{
int i = 1;

while(1)



{
if (i*e%phiN != 1)
{
i = i+1;
}
else
{
return i;
}
}
}

// return a^b (mod phiN)
long long myPow(long long a, long long b, long 
long phiN) {
long long ret = 1;
for (int i=0; i<b; i++)
{
ret *= a;
ret %= phiN;
}
return ret;
}


