

A Practical Cosmetic Try-on System
using OpenCV
Sohee Yoon

Korea International School

Abstract

There are a growing number of applications that allow customers to virtually apply cosmetic items in order

to try out various makeup styles and sample new products before making an online purchase. The integration

of facial recognition algorithms with augmented reality technologies facilitates this. This method has

limitations due to the fact that the sampled color is shown on top of the user's skin tone without taking into

account the combination of two colors and the transparency of the mixed color. Thus, the following research

paper provides an alternative method for producing precise color combinations. The system comprises two

primary components: First, perform gamma correction and adjust the image's brightness and contrast. The

color of the user will then be extracted. Second, once the user selects the desired product color, the system

mixes the user's skin tone with the color of the product. The evaluation section demonstrated the

practicability of the proposed system. At the conclusion of the study, I make a heuristic proposal for a user-

satisfaction-improving recommendation system based on object detection and the k-mean clustering

algorithm in machine learning.

1. Introduction

Makeup has multiple purposes, including

enhancing natural features, projecting confidence

and power, and expressing oneself. Makeup

products grew increasingly affordable and

accessible in drugstores, department stores,

shopping malls, and even convenience stores as

their diversity of uses expanded. As depicted in

<Figure 1>, the cosmetics market's worth has

climbed to $638.6 billion and is expected to

continue rising. Makeup utilization is undeniably

convenient, but with so many product varieties,

people are bound to have difficulty distinguishing

between products. The retail revolution has

caused a paradigm shift in the beauty industry,

with in-store makeup sampling giving way to

digitized experiences.

<Figure 1>

The integration of facial recognition algorithms

and augmented reality technology into beauty

applications and digital services enables users to

virtually apply multiple makeup and hairstyles. A

ccording to a study of 3,382 women in the United

States, 30% of younger customers have used a

virtual beauty tool to test on makeup [1].

YouCam by Perfect Corp. has been downloaded

over 900 million times worldwide; this app

employs AgileFace tracking technology to let users

try on hundreds of makeup looks and products.

Modiface delivers an augmented reality experience

for 84 beauty companies. Sephora To Go offers a

virtual try-on for numerous lip product shades as

well as an in-store experience [2]. In addition,

numerous try-on programs display the selected

color alongside the user's skin tone.

<Figure 2>

The inaccuracy of virtual try-on applications is

seen in <Figure 2>. The upper left corner

illustrates how most programs overlay the test

color on top of users' skin, which is a different

color than what users will actually see while using

the test color. The illustration in the top right

corner illustrates how to mix the skin color and

test color with paint. The bottom depicts the

combination of skin and test color with a 50% and

30% transparency filter, respectively. In this paper,

I will investigate the many sorts of color

expressions and demonstrate that simply

combining color codes has its limits. In addition,

I will propose an alternate technique that returns

an exact color combination using Python color-

coding, hence enhancing user satisfaction.

The preceding section introduced the paper's

context, the problem to be tackled, and the

limitations of the existing method. The second

section describes color expressions in real and

virtual environments. In Section III, the suggested

system is described. The validity of the suggested

system, experimental findings, and conclusions

are presented in Sections IV and V. The final

section of this study discusses further implications

and research for this paper.

1. Prelimere

A. Color Expressions in the Real World

Paint is used to express real-life colors. Red, blue,

and yellow are the primary colors; they cannot be

created by mixing other colors. However, primary

colors can create secondary ones by mixing. The

resulting colors are known as secondary colors.

Tertiary colors are generated by combining two

primary colors or all three primary colors.

Complementary colors are colors that, as the term

implies, "complementing" one another. The

complementary color of one primary color is the

color created by blending the other two primary

colors.

For example, the complementary color of red is

green, blue orange, and yellow purple. As

complementary colors, you may have noticed that

the shadow of a green apple contains a bit of red

[3].

B. Color Expressions in the Digital World

In the digital realm, colors are created by

combining the pigments red, green, and blue.

There are numerous color expression formats,

including HEX, RGB, RGBA, HSL, and HSLA.

Detailed descriptions of each category follow.

 B.1. HEX

HEX represents color with a sequence of

hexadecimal integers in the format #RRGGBB.

The RR represents red, the GG represents green,

and the BB represents blue. The range of

hexadecimal integers from 00 to FF represents the

level of intensity, with 00 being the weakest and

FF the strongest. Recently, contemporary

technology has boosted the transparency of

hexadecimal integers. In standard #RRGGBB

notation, there are 16,777,216 possible color

combinations, as RR, GG, and BB each contain

256 distinct values between 00 and FF.

<Figure 3>'s upper left corner is colored #FF0000,

a pure red, with the greatest hexadecimal values

for RR (red) and the lowest for GG (green) and BB

(blue) (blue). The color shown in the top right

corner corresponds to #00FFFF. The bottom

consists of white corresponding to the levels

#FFFFFF. With the addition of transparency, the

format becomes #AARRGGBB, where AA defines

the level of opacity [4].

Color of #FF0000 Color of #00FFFF

<Figure 3>

 Color mixture of all three main colors: red, green,

blue.

B.2. RGB

RGB refers to Red, Green, and Blue, the additive

color synthesis primary colors. It has layers of red,

green, and blue pixels that have been blended into

a single unit. It is capable of producing 16 million

colors, each with approximately 250 distinct

shades [5]. The primary colors are represented by

256 levels ranging from 0 to 255. This system is

utilized in display screens. The graphic above

exhibits the additive color system's mixing scheme.

<Figure 4>'s upper left corner displays the color

yellow that corresponds to the levels R=255,

G=255, and B=0. The magenta in the upper right

corner corresponds to R=255, G=0, and B=255.

The white at the bottom corresponds to the values

R=255, G=255, and B=255.

Color of R=255, G=255,

B=0

Color of R=255, G=0,

B=255

<Figure 4>

Color mixture of all three primary colors.

B.3. RGBA

RGBA is similar to RGB (from above). The

addition is made to the letter A, which represents

Alpha. The first three values, Red, Green, and

Blue, are represented by integers between 0 and

255. Alpha specifies the level of color's

transparency. Its value is between 0 and 1: 0. 0 is

fully transparent, while 1 is totally opaque.

<Figure 5> R=255, G=0, B=255 for all three colors, and

A at 1, 0.5, and 0 from left to right.

The RGB level is displayed in <Figure 5> as

R=255, G=0, B=0, and A=1.0, 0.5, and 0.0, where

1.0 is the red color on the left and 0.0 is the white

color on the right.

B.4. HSL

Hue is at 0° or 360°, 60°,

and 120°.

Hue is at 0° or 360, and

saturation is 0%, 50%,

100%.

<Figure 6>

Hue at 240°, saturation at 100%, and lightness of 0%,

50%, and 100% from left to right.

HSL is an acronym for hue saturation and

lightness. The hue is determined by the angle on

the color wheel. Green is 120°, while blue is 240°.

Saturation is quantified as a percentage, with

100% denoting complete saturation and 0%

denoting a neutral gray. Lightness is also

represented using percentages, with 0% signifying

black and 100% white.

<Figure 6>'s upper left corner displays the mixture

for hues of 0°, 360°, 60°, and 120°, which are red,

yellow, and green, respectively. The top right

corner displays the mixture when the hue is 0° or

360° and the saturation is 0%, 50%, and 100%.

The hue is 240°, but the saturation is 100%.

When the lightness is 0%, the color is black; when

it is 50%, the color is blue; and when it is 100%,

the color is white.

B.5. HSLA

HSLA is comparable to HSL (from above). The

letter A, which stands for Alpha, is what makes the

difference. Alpha indicates the level of color's

transparency.

<Figure 7> Hue at 120°, saturation at 100%, lightness at

50%, and alpha is 1, 0.5, and 0 from left to right.

The hue in <Figure 7> is 120 degrees, the

saturation is 100%, and the brightness is 50%;

from left to right, the alpha value changes from 1.0

to 0.5 to 0.0. The uppermost color is white, while

the lowermost color is green.

II. Proposed System

Virtual makeup application is mostly dependent

on the synthesis of digital color-coding forms such

as HEX, RGB, RGBA, HSL, and HSLA (explained

above). However, the issue with existing try-on

technology is that it merely blends the user's skin

tone with the selected test shade through the

synthesis of light, which is a far cry from reality. If

all colors are merged through the synthesis of light,

white is the result. In actuality, if all the hues are

mixed with paint, the result is black. This

decreases accuracy and user satisfaction.

Therefore, I suggest a unique approach that

utilizes color codes to resolve the issue of

erroneous color representation in virtual beauty

apps.

<Figure 8> shows a flowchart of the system I

propose. The user is initially photographed on a

white background. The photo is uploaded to the

application, and the brightness and contrast are

adjusted to accurately represent the user's skin

tone.

Using gamma correction, the first method

minimizes the disparity between the digital camera

and human color perception. The link between

photons and the digital camera is linear, as when

twice as many photons are sent, the camera detects

twice as strong a signal. Nonetheless, the

relationship between the number of photons and

the amount perceived by the human eye is

nonlinear, as the human eye senses twice as many

photons as a fraction brighter. The human eye is

also more sensitive to changes in dark tones than

bright ones.

These disparities are diminished via gamma

correction. Gamma correction or Gamma is a

nonlinear operation that translates the color,

luminance, and tristimulus values of an image so

that it most closely resembles how the human eye

perceives it. The fundamental equation for gamma

correction, often known as the power-law

transform, is O = I ̂ (1 / G). I represents the input

image, whereas O represents the output image. G

is the gamma value ranging from 0 to ≈4 [6].

The contrast and brightness are then adjusted

using the grayscale histogram. By defining alpha

and beta, contrast and brightness can be modified

on the conversion scale. Consequently, the output

g be:

g(i,j) = α * f(i,j) + β,

where f is the input, α is the alpha value derived

by dividing the intended output range of 0 to 255

by the minimum and maximum values on the

accumulative grayscale, and β is the beta value

calculated by plugging in g(i,j)=0 and

f(i,j)=minimum gray into the equation above [7].

The actual skin color is then extracted. In method

2, the skin color and product color are

transformed from RGB to CMYK based on the

user's input. The opacity is then multiplied, and

the colors are blended at a ratio of 1:1. The final

output is the CMYK value of the user's skin tone

and the color of the product.

III. Evaluation

A. Implementation

This is the implementation environment: macOS

version 11.6.4, 2.2 GHz 6-core Intel Core i7 CPU,

and 16GB 2400 MHz DDR4 memory. Python is

the implementation language (v 3.10.2).

A.1 Libraries

I primarily utilized the OpenCV (Computer

Vision Library), NumPy, and Matplotlib libraries.

OpenCV employs computer vision and machine

learning algorithms to accomplish a number of

tasks, including identifying human actions in a

video, finding similar images in a database, and

enhancing image resolution. NumPy is an open-

source project that makes numerical computing

possible with Python. Matplotlib supports

interactive, animated, and static visualizations.

A.2 Method 1 implementation

 In the course of executing method 1, I

defined a total of 3 functions: gamma (image,

gamma) – for the optimal gamma value,

convertScale (image, alpha, beta) – rearrange the

scales based on the values of alpha and beta, and

automatic brightness and contrast(image, clip hist

percent=0.8) – abstracting

def gamma(image, gamma):

 out = image.copy()

 out = ((out / 255) ** (1 / gamma)) *

255

 out = out.astype(np.uint8)

 return out

Line one defines the input to the function

as (image, gamma). Line two creates a copy

of the image and assigns it to out. Line three

scales the image copy's pixels to the range 0

to 1 in order to apply the Gamma

correction, and then scales back to the range

0 to 255. Line four shows the image as a

NumPy array because the operations are

vectorized, allowing for quick calculation.

Line five returns the output of the function.

def convertScale(img, alpha, beta):

 new_img = img * alpha + beta

 new_img[new_img < 0] = 0

 new_img[new_img > 255] = 255

 return new_img.astype(np.uint8)

Line one defines the function’s input as

(img, alpha, beta) Line two assigns img x

alpha + beta into new_img. Line three sets

the values less than 0 as 0, which is the color

black. Line four sets the values greater than

255 as 255, which is the color white. Line

five returns the function’s output as

new_img in the NumPy form.

def

automatic_brightness_and_contrast(i

mage, clip_hist_percent=0.8):

 gray = cv2.cvtColor(image,

cv2.COLOR_BGR2GRAY)

 hist =

cv2.calcHist([gray],[0],None,[256],[0,25

6])

 hist_size = len(hist)

 accumulator = []

 accumulator.append(float(hist[0]))

 for index in range(1, hist_size):

accumulator.append(accumulator[inde

x -1] + float(hist[index]))

 maximum = accumulator[-1]

 clip_hist_percent *=

(maximum/100.0)

 clip_hist_percent /= 2.0

 minimum_gray = 0

 while accumulator[minimum_gray] <

clip_hist_percent:

 minimum_gray += 1

 maximum_gray = hist_size -1

 while accumulator[maximum_gray]

>= (maximum - clip_hist_percent):

 maximum_gray -= 1

 alpha = 255 / (maximum_gray -

minimum_gray)

 beta = -minimum_gray * alpha

 auto_result = convertScale(image,

alpha=alpha, beta=beta)

 return (auto_result, alpha, beta)

Line one defines the function’s input as (image,

clip_hist_percent=0.8). Line two assigns the

grayscale image as gray. Line three makes the

grayscale histogram with the range 0 to 255.

Line four puts the histogram’s length into

hist_size. Lines five to nine create the cumulative

histogram by adding the previous values of the

histograms. Lines ten to twelve use the clip hist

percent of 0.8 to calculate the number of pixels

that needs to be clipped. Lines thirteen to sixteen

clip 10% of the values from the left end of the

histogram. Lines seventeen to twenty clip 10% of

the values from the right end of the histogram.

Lines twenty-one to twenty-two find the value of

alpha with the contrast and brightness formula.

Line twenty-three finds the value of beta by using

the alpha and the contrast and brightness formula.

Lines twenty-four to twenty-five use the

convertScale function defined previously with the

alpha value in line 21 and the beta value in line

23. Line twenty-six returns the function output.

 # main code

img_file = "images/test1.jpg"

save_file = "images/test1_result.jpg"

image = cv2.imread(img_file)

image_r = cv2.resize(image, (300, 300))

cv2.imshow('original image', image_r)

cv2.waitKey(0)

image_g = gamma(image_r, 1.5)

cv2.imshow('after gamma', image_g)

cv2.waitKey(0)

auto_result, alpha, beta =

automatic_brightness_and_contrast(i

mage_g)

print('alpha', alpha)

print('beta', beta)

cv2.imshow('after

automatic_brightness_and_contrast',

auto_result)

cv2.waitKey(0)

cv2.imwrite(save_file, auto_result)

Line one assigns test1.jpg from the images folder

as img_file. Line two assigns test1_result.jpg from

the images folder as save_file. Line three reads the

img_file with OpenCV and assigns it to image.

Line four resizes the image as 300 by 300 pixels

and assigns it to image. Line five displays the

image_r labelled as the original image. Line six

displays the image_r window infinitely until any

keypress. Line seven inputs image_r and the

gamma value of 1.5 into the gamma correction

equation and assigns it to image_g. Line eight

displays the image_g labelled as after gamma.

Line nine displays the image_g window infinitely

until any keypress. Lines ten to eleven input

image_g into the

automatic_brightness_and_contrast function

defined previously and assign it to auto_result,

alpha, beta. Lines fourteen to sixteen display the

auto_result image labelled as

automatic_brightness_and_contrast. Line

seventeen displays the image infinitely until any

keypress. Line eighteen saves the auto_result

image.

import cv2

import numpy as np

import sys

np.set_printoptions(threshold=sys.maxsize)

img = cv2.imread('images/test1_result.jpg')

ycrcb =

cv2.cvtColor(img,cv2.COLOR_BGR2YCrCb)

Cr:133~173, Cb:77~127

mask_hand =

cv2.inRange(ycrcb,np.array([0,143,77]),np.array([

255,173,127]))

img_result = cv2.bitwise_and(img, img,

mask=mask_hand)

b, g, r = cv2.split(img_result)

b_sum = []

for i in range(len(b)):

 for j in range(len(b[i])):

 if b[i][j] != 0:

 b_sum.append(b[i][j])

b_sum = sorted(b_sum, reverse=True)

new_b = b_sum[:int(len(b_sum)*0.5)]

avg_b = sum(new_b)//len(new_b)

 g_sum = []

for i in range(len(g)):

 for j in range(len(g[i])):

 if g[i][j] != 0:

 g_sum.append(g[i][j])

g_sum = sorted(g_sum, reverse=True)

new_g = g_sum[:int(len(g_sum)*0.5)]

avg_g = sum(new_g)//len(new_g)

r_sum = []

for i in range(len(r)):

 for j in range(len(r[i])):

 if r[i][j] != 0:

 r_sum.append(r[i][j])

r_sum = sorted(r_sum, reverse=True)

new_r = r_sum[:int(len(r_sum)*0.5)]

avg_r = sum(new_r)//len(new_r)

print(avg_r, avg_g, avg_b)

cv2.imshow("Result", img_result)

cv2.waitKey(0)

Line one imports OpenCV. Line two imports NumPy

as the notation np. Line three imports the system

library (system-specific parameters and functions) Line

four prints the full NumPy arrays. Line five reads the

test1_result.jpg image from the images file and assigns

it to img. Lines seven to eight convert the img from

RGB to YCrCb and assign it as ycrcb. Lines eight to

ten extract a specific region of the ycrcb image file and

assign it to mask_hand. Lines eleven to twelve use the

bitwise_and function to black out other colors except

the ones in mask_hand and assign it to img_result.

Line thirteen splits the image img_result’s color into

separate single-channel images b, g, r. Lines fourteen

to twenty one gather all the b values and find the sum

and the brightest 50% and then the average. Lines

twenty-two to twenty-nine gather all the g values and

find the sum and the brightest 50% and then the

average. Lines thirty to thirty-seven gather all the r

values and find the sum and the brightest 50% and

then the average. Line thirty-eight prints the average

of r, g, b. Line thirty-nine displays the img_result as

Result. Line fourty displays the image window

infinitely until any keypress.

A.3 Method 2 implementation

During the method 2 process, I wrote two functions:

rgb to cmyk(r,g,b) for converting the color from the

rgb code to the cmyk code and ink add for rgb(list of

colours) for converting the color list to the cmyk code.

def rgb_to_cmyk(r,g,b):

 if (r == 0) and (g == 0) and (b == 0):

 # black

 return 0, 0, 0, cmyk_scale

 # rgb [0,255] -> cmy [0,1]

 c = 1 - r / float(rgb_scale)

 m = 1 - g / float(rgb_scale)

 y = 1 - b / float(rgb_scale)

 # extract out k [0,1]

 min_cmy = min(c, m, y)

 c = (c - min_cmy) / (1-min_cmy)

 m = (m - min_cmy) / (1-min_cmy)

 y = (y - min_cmy) / (1-min_cmy)

 k = min_cmy

 # rescale to the range [0,cmyk_scale]

 C, M, Y, K = c*cmyk_scale,

m*cmyk_scale, y*cmyk_scale,

k*cmyk_scale

 C, M, Y, K = int(C), int(M), int(Y),

int(K)

 return C, M, Y, K

Line one defines the function rfgb_to_cmyk. Lines

two to four state that if r is 0 ,g 0 and b 0, it returns

0, 0, 0 on the CMYK scale. Line five to seven

rescales the RGB scale to the CMY scale. Lines

eight to twelve extract the K value with the CMY

values. Lines thirteen to fifteen rescale the CMYK

form in the range of 0 to 1 to the range of 0 to 100

percent. Line sixteen returns C, M, Y, K

def ink_add_for_rgb(list_of_colours):

 C = 0

 M = 0

 Y = 0

 K = 0

 for (r,g,b,o) in list_of_colours:

 c,m,y,k = rgb_to_cmyk(r, g, b)

 C+=o*c

 M+=o*m

 Y+=o*y

 K+=o*k

 C, M, Y, K = int(C), int(M), int(Y), int(K)

 return [C, M, Y, K]

Line one defines the function ink_add_for_rgb.

Lines two to five initialize the CMYK values to 0.

Lines six to eleven individually multiply the

opacity into the CMYK values. Line twelve defines

the C, M, Y, K values as integers. Line thirteen

returns C, M, Y, K.

rgb_scale = 255

cmyk_scale = 100

r1, g1, b1 = 221, 178, 154

r2, g2, b2 = 215, 135, 112

c, m, y, k =

ink_add_for_rgb([(r1,g1,b1,0.5),(r2,g2,b2,0.5)])

print(c, m, y, k)

Line one assigns 255 as the rgb_scale. Line two

assigns 100 as the cmyk scale. Line three is the

RGB of the skin color. Line four is the RGB of the

product color. Lines five to six use the function

ink_add_for_rgb defined previously. R1, g1, b1

and r2, g2, b2 are inputs and the opacity value is

0.5 for both. Line seven prints the c, m, y, k value.

B. Evaluation

B.1. Gamma Correction

In this paper, I did gamma correction using a

gamma value of 1.5. The value was determined by

experiments.

<Figure 9> Original image, gamma value of 0.5,

and 1.5, respectively.

Gamma values are in the range of 0 to ≈4. If

gamma=1, then the brightness remains the same.

If gamma<1, the brightness increases, and if

gamma>1, the brightness decreases.

B.2. Grayscaling

<Figure 10> Grayscale histogram before and after

clipping

The grayscale histogram is used to evaluate the

different pixel intensity values of the image. The

conversion formula of RGB[A] to Gray used was Y

← 0.299R + 0.587G + 0.114B. On the histogram,

only 80% of the cumulatively distributed data are

utilized. In <Figure 10>, the blue line represents

the original cumulative histogram, while the

orange line represents the clipped histogram. As

illustrated in the figure above, 10% of the values

are clipped from both ends so the beginning and

end values of the blue line are 0.

B.3. Combining the colors

When the skin color is extracted by finding the

average of red, green, and blue individually, only

50% of the brightest colors are used and the other

darker colors are omitted to prevent the skin color

from displaying inaccurate darkness. The skin

color and product test color are combined with the

opacity in a ratio of 1:1, as this ratio demonstrated

the lowest percent inaccuracy.

B.4. Accuracy

I calculated the accuracy by subtracting the

calculated RGB value from the real one. As the

RGB distance grows, the error grows as well. The

pseudocode is as follows:

Evaluation

1
2

3
4
5
6

7
8

9
10
11
12
13

14
15
16

rgb_scale = 256
cmyk_scale = 100

r1, g1, b1 = 221, 178, 154
r2, g2, b2 = 215, 135, 112
r3, g3, b3 = 223, 157, 133
r4, g4, b4 = 0,0,0

error = 0
t = 0.1

while t <=1:
 error = 0
 c, m, y, k = ink_add_for_rgb([(r1,g1,b1,1-
t),(r2,g2,b2,t)])
 r4, g4, b4 = cmyk_to_rgb(c, m, y, k)

 error += abs(r3-r4) + abs(g3-g4) + abs(b3-b4)
 print(t, error)
 t += 0.1

Line one sets the RGB scale as 256. Line two sets

the CMYK scale as 100. Line three is the r1, g1,

and b1 values of the skin color. Line four is the r2,

g2, and b2 values of the product color. Line five is

the r3, g3, and b3 values of the actual product

color on the skin. Line six is the r4, g4, and b4

values of the combined skin color and product

color with coding. Lines seven to eight start the

error value as 0, and t is the opacity. Lines nine to

thirteen keep the process of finding the error

going until t is 1. In lines fourteen through sixteen,

the error numbers are displayed and the function

is continued by increasing the increment by 0.1.

Tria
l

Skin color Product
color

Skin color +
product color

Actual
color

1

216, 176,

150

187, 82, 83

204, 129,
118

204, 120,
108

2

216, 176,
150

248, 245,
245

235, 213,
199

231, 209,
191

3

216, 176,
150

209, 177,
156

214, 180,
156

215, 174,
142

4

216, 176,
150

158, 101, 86

189, 138,
119

184, 137,
107

Table 1: Comparison of predicted experimental results and actual
results of the skin-product color combination

iter 0.4 0.5 0.6 0.7

1 38.7072 20.6080000
00000033

6.33599999
99999985

14.6687999
99999962

2 6.61599999
9999957

11.9696000
00000014

38.0047999
9999993

54.8239999
99999955

3 19.5023999
99999966

21.6527999
99999957

21.6527999
99999957

24.3631999
99999978

4 36.9984000
0000002

19.0784000
00000002

10.0447999
99999995

21.7280000
00000037

Table 2: Error-values when the product color opacity is
0.4, 0.5, 0.6, 0.7.

Table 1 provides a visual representation of the

color difference between the predicted and actual

experimental results, which is not indiscernible

but fairly slight.

Table 2 shows error values with varying degrees of

opacity. The numbers in the table correspond to

the product color opacity values of 0.4, 0.5, 0.6,

and 0.7 and the skin color opacity values of 0.6,

0.5, 0.4, and 0.3. The lower error value indicates

less error; the lowest error value in the first trial is

0.6, in the second trial it is 0.4, in the third trial it

is 0.4, and in the fourth trial it is 0.6. The average

lowest error value throughout all four trials is 0.5;

hence, the opacity level for the product color and

skin color in the experiment was adjusted to 0.5 in

order to obtain the most accurate results with the

lowest error value.

V. Conclusion & Future Works

In this paper, I suggested a new system for

recommending cosmetic colors. This approach

provides consumers with realistic color

combinations that depict how a product will

appear on their skin. The system's effectiveness

was demonstrated during the evaluation process,

as experimental results were similar to actual

results.

The proposed system has a few minor flaws: the

full skin color is retrieved, but not the colors of

individual facial features such as the eyes or the

lips, and the system cannot recommend a product

because it can only display how a product appears

on the user's skin.

I could adopt two machine learning methods to

handle the aforementioned problems: object

detection and clustering. Object detection is a type

of supervised learning, and the YOLOv5

algorithm can detect particular objects. The things

are categorized into different classes. Such

classifications include the eyes, nose, cheeks, and

lips. Thus, individual feature colors can be

retrieved and mixed with product colors.

Clustering is an unsupervised learning technique

that groups related data. Users with similar skin

tones would be grouped together and

recommended products would be provided.

Reference

[1] https://segmanta.com/blog/22-women-us-

used-app-try-makeup/

[2] https://www.allure.com/story/virtual-makeup-

try-on-replacing-testers

[3] https://www.thesprucecrafts.com/color-

theory-for-painting-2578070

[4]

https://www.w3schools.com/colors/colors_hexa

decimal.asp

[5] https://tachyonlight.com/rgb-led-lighting-

types-benefits/

[6[https://pyimagesearch.com/2015/10/05/ope

ncv-gamma-correction/

[7]

https://docs.opencv.org/3.4/d3/dc1/tutorial_ba

sic_linear_transform.html

https://segmanta.com/blog/22-women-us-used-app-try-makeup/
https://segmanta.com/blog/22-women-us-used-app-try-makeup/
https://www.allure.com/story/virtual-makeup-try-on-replacing-testers
https://www.allure.com/story/virtual-makeup-try-on-replacing-testers
https://www.thesprucecrafts.com/color-theory-for-painting-2578070
https://www.thesprucecrafts.com/color-theory-for-painting-2578070
https://www.w3schools.com/colors/colors_hexadecimal.asp
https://www.w3schools.com/colors/colors_hexadecimal.asp
https://tachyonlight.com/rgb-led-lighting-types-benefits/
https://tachyonlight.com/rgb-led-lighting-types-benefits/
https://pyimagesearch.com/2015/10/05/opencv-gamma-correction/
https://pyimagesearch.com/2015/10/05/opencv-gamma-correction/
https://docs.opencv.org/3.4/d3/dc1/tutorial_basic_linear_transform.html
https://docs.opencv.org/3.4/d3/dc1/tutorial_basic_linear_transform.html

