
1

Application of Shortest Path Algorithm Using Dijkstra’s Algorithm

Thomas Yong Hee Song Jr.

Valor School

ABSTRACT
While current GPS systems do efficiently map routes from a starting point to a desired destination for different
modes of transportation, it is the unfortunate case that these systems are not optimized and personalized for the
user. For example, a user might have a limited amount of money or preferences for types of roads they want to
travel. In addition, many times, route-finding systems fail to acknowledge the realistic logistics of the road when
mapping the shortest distance, such as constantly changing road congestion or waiting times at traffic lights. This
lack of personalization and accuracy makes it difficult and frustrating to utilize such services at times. Developing
an algorithm to tackle these problems would help users to get to place faster while optimizing their journey based
on their interests, facilitating travel from place to place. This paper ultimately aims to gain inspiration from, and
apply, Dijkstra’s Algorithm to various shortest path problem variants and formulate actual al gorithms that are
tested for efficiency.

Graph
In a mathematical context, graphs represent shapes consisting of
vertices and the edges that connect select vertices. These objects
can be utilized to represent many real life situations. Some examples
include networks consisting of interconnected computers or cities
and the roads that connect them. Depending on the amount of
edges relative to the number of vertices, graphs can be divided into
dense/sparse graphs. Furthermore, the two most basic methods
of data storage for vertices and edges are adjacency matrices and
adjacency lists. Since the efficiency of each storage method differs
case by case for the structure of the graph, the paper utilizes both to
tackle each problem. [1]

Dijkstra’s Algorithm
In order to solve the many shortest path problems presented in this
paper, the famous path-finding algorithm – “Dijkstra’s Algorithm”
– was used extensively. Given a graph with vertices and weighted

Figure 1: An example of graph modeling

1. INTRODUCTION

2. DIJKSTRA’S ALGORITHM

2.1. OVERVIEW
Dijkstra’s Algorithm maps a route by constantly updating the
distance from one vertex to another. By default, all distances from the
starting vertex are set to infinity regardless of the weights respective
to each edge. The algorithm first looks at the neighboring nodes - if
the newly calculated distance is smaller than the current distance,
the distance is updated. Subsequently, the current node will be
reallocated to the node that has the smallest assigned distance.

Again, the neighboring nodes are analyzed and if the newly
calculated distance based on the weights is smaller than the current
distance, the distance is updated and the current node is moved.
This process is repeated until the destination becomes the current
node. Alternatively, if a destination is not defined, the algorithm
will continue to run until all distances have been updated.

edges, Dijkstra’s Algorithm can find the shortest path from one
vertex to another. This can easily be translated to the situation
at hand by converting a map into a weighted graph: places are
represented as vertices, roads are represented as edges, and other
factors such as distance or congestion can be input through the
weights assigned to edges.

Design of the Paper
Section 2 of the paper is dedicated to proving the Dijkstra’s algorithm,
as well as explaining the numerous variations to be utilized in data-
storage and algorithm building for the code. Since the density of the
graph is determines which variation of Dijkstra’s Algorithm is more
efficient, two different methods were used: the “for loop” and the
“priority queue.” Section 3 presents said variations of the algorithm
and explains how they were made to fit each shortest path problem.
With each problem, the methods and results are presented. Finally,
the conclusion compiles and brings all the results together.

2

2.2. PROOF OF ALGORITHM
The proof of the feasibility of the algorithm is quite simple through a
proof by contradiction. Let’s say that there is a set S of points whose
shortest paths from the starting point have already been established.
Suppose that there is a vertex x outside of it that, by Dijkstra’s
theorem is the next point to be registered so that the shortest path to
vertex x should be one that is directly connected to set S. However,
let us say that there is a vertex y such that an indirect path to vertex
x through vertex y is the shorter path, thereby refuting the theorem.
However, if this is true, vertex y would have been the next vertex
to be registered rather than vertex x. Therefore, the contradiction
is invalid. Although the proof is invalid when edges with negative
weights are involved, since that is not the case for finding paths in
real life, the proof is solid.

3. APPLICATIONS AND EXPERIMENTS

2.3. “FOR” LOOP VS. PRIORITY QUEUE
There are two main ways of constructing a python code for Dijkstra’s
Algorithm: employing the structure of a “for” loop or using a priority
queue. As can be seen in the pseudo-code, the method of a “for”
loop was used due to its superiority of time complexity in this case.
Time complexity is the computational complexity that describes
the amount of time it takes to run an algorithm. Time complexity
is commonly estimated by counting the number of elementary
operations performed by the algorithm, supposing that each
elementary operation takes a fixed amount of time to perform.

When using the loop, for each vertex, the loop goes as such. It first
searches among the vertices that do not have a set distance in order to
find the current smallest value. This will result in a time complexity
of V for each loop. Subsequently, after the vertex has been registered
as the current vertex, each of its edges are evaluated in order to
update them if a smaller distance is found. After all loops have been
completed, this will result in a time complexity of E. Therefore, the
final time complexity can be represented by O(V2+E).

On the other hand, the nature of a priority queue allows it to
produce a time complexity of logE because it makes a tree of all the
edges for each vertex. When the entire code has been run, the final
time complexity will be O(ElogE). Since we are using maps of cities,
it is important to note that the resulting graphs will be very dense.
As a result, it follows that in such dense graphs, V2+E < ElogE since
E is considerably bigger than V. Therefore, the “for” loop is a better
choice in this case.

2.4. GRAPH STORAGE METHOD
When constructing the code in python, there were two ways to
store the graph upon which the algorithm would operate on. The
information pertaining to the graph, including the number of
vertices, connections between vertices, and the weights of edges,
could either be stored as an adjacency matrix or an adjacency graph.
Using an adjacency list would mean creating a dictionary with each
vertex being a key and the value being a list of pairs (connected

vertex, weight of edge) to the corresponding vertex. An adjacency
matrix would be a matrix with coordinates with vertices as values
(v1, v2). If the two vertices aren’t connected, the value in the matrix
would be 0. If they are, the value would be the weight of the edge
that connects them.

Since running time is a crucial factor in choosing the optimal code,
the method of creating an adjacency list was chosen because of its
ability to run faster than an adjacency matrix. When the matrix
is used, unnecessary information is used because vertex pairs
that are not connected are included in the matrix. Therefore, the
computer will have to go through extraneous data before it can
access the vertices that are actually connected. On the other hand,
the adjacency list simply stores data just for the vertices that are
connected, eliminating much of the running time that is present
when using a matrix. Although the time gap will be minimal if
the graph is very dense, the fact remains that using an adjacency
list always results in a shorter running time, making it the optimal
choice.

Problem 1. Dijkstra
In this case, distance is the only limiting factor for paths. While
finding a path from the starting point to the destination, the
path with the shortest distance is to be found. The inputs for this
problem will be the weight of the distance of the edge for each pair
of connected vertices. Each time an edge is crossed and a vertex is
reached, the weight will be added to the current distance to that
vertex. The current distance to a vertex will always be the shortest
one and will be updated accordingly, depending on novel paths to
the vertex.

In order to test the efficiency of the two different types of graph
storage method - matrix and list - as well as Dijkstra algorithms - “for”
loop and priority queue - in terms of running time, each method
was executed onto either a sparse or a dense graph. A subway map
was used as an example of a sparse graph, and a complete graph
with 3000 vertices was used for the dense graph.[3] Below are the
running times ofe ach method.

Figure 2: Proof of Dijkstra’s algorithm

Figure 3: Adjacency Matrix(mid) and Adjacency List(right)
of Sample Graph(left) [2]

3

Problems 2. Limited Money
Realistically, travelers possess a limited amount of money that they
can use for transportation. Thus, we add a second factor to the
algorithm, which is cost. While finding a path from the starting point
to the destination, the amount of remaining money must always be
greater than or equal to zero. In addition, the distance should be
minimal while maintaining a cost lower than the threshold.

In addition to the initial weight of distance in the edges, a second
weight of the cost for traversing each edge will be appended to the
adjacency list. There will also be an additional required input of
the initial cost that the person starts with at the starting point.
The algorithm will be set so that each time an edge is crossed, the
respective cost will be subtracted from the remaining cost at the
current vertex, and a path will be deleted if the remaining cost
becomes a negative value.

Since there are 2 limiting factors, although it does mean that there
can be multiple stored paths at each vertex, this doesn’t mean that
all paths with non-negative remaining costs will be stored as valid.
At each vertex, certain paths will be obviously “better” regardless
of subsequent movements. If, for one path, the remaining cost is
lower and the distance is greater than another at the same vertex,
the former path will be deleted. The same goes for when one of the
conditions remains true and the values are the same for the other.
Otherwise, all paths will be stored as valid.

As can be seen in Table 1, the priority queue method was comparatively
efficient in the case of a sparse graph, but the opposite is apparent
in the case of a dense graph. This is a predictable result. Since
the sparser the graph is, the more accurate is the approximation,
V≈E, and thus the time complexity of O(ElogE) is better than that
of O(V^2+E) (faster results, therefore smaller time complexity, is
considered “better”).

(V2+E)-(ElogE)≈(E2+E)(ElogE)=E2+E(1-logE)>0

since the domain of E is [0, ∞), all integers.

The four versions of codes that were used are included in the
Appendix.

Problems 3. Minimal Transitions
The number of transitions that are made between subway lines, bus
lines, or modes of transportation is taken into consideration in this
case. This time, a second limiting factor of frequency of transitions
of a path is added. While finding a path from the starting point to
the destination, the algorithm must maintain a minimal number of
transitions.

For this case, there will be a second required input of the “type” of
each edge in addition to the distance. The type of the edge will be
an indicator of transition because if the type of the previous edge is
different from the subsequent edge in respect to the vertex, it means
that a transition was made. However, there will not be two methods
of storage for the paths because the number of transitions will not
be stored separately from the distance of the path. Instead, the
algorithm will be structured so that a transition is extremely harmful
to the path. Each time a transition is made in a path, an extremely
large number, one that is much greater than the weights of the edges
will be added to the current distance. As a result, a path with a
smaller number of transitions will always be superior to the one with
more transitions.

However, these paths will not necessarily be deleted. Sometimes,
transitions will be necessary to get from the starting point to the
destination. In this case, the extremely large number will have to be
added to all paths, resulting in comparison among these large values.
Transitions can be thought of as levels, because paths will always be
compared among those with the same number of transitions.

Table 2: Pseudocode for Problem 1

Table 3: Pseudocode for Problem 2

Table 4: Pseudocode for Problem 3

Table 1: Time Comparison between adjacency matrix/list and graph types

4

Problems 4. Traffic lights
A major influential factor in travelling is the periodical delay that
results from the changing of traffic lights. Due to traffic lights, an
edge can be passed through during a certain portion of a period,
the period being the length of a cycle from the start of a green light
to the end of a green light. If an edge connecting two vertices is not
passable at a certain moment, there will be a waiting time that adds
on to the inherent weight of the edge. As a result, the algorithm
takes into account the waiting times at given moments, influencing
the path that it creates. An edge that is shorter than another may be
deemed longer if there is a waiting time that is present.

An important assumption is made in running the algorithm, which
is, upon the start of the path, every traffic light starts at a green
light. However, it is important to note that this assumption does not
influence the algorithm’s accuracy when the assumption does not
hold true, because if it is able to perform normally in subsequent
steps, it means that it is able to perform normally in non-uniform
traffic-lights. The assumption is made simply for convenience when
constructing the algorithm.

The algorithm was tested on an actual subway map of seoul to
determine optimality between a for-loop and a priority queue, as
well as a matrix and an adjacency list. JSON was utilized to extract
information from a data file containing the information for the
lines and stops of the subway system in Seoul. Once a graph was
constructed using JSON, either as a matrix or an adjacency list,
the algorithm was executed to compare the running time between
the different methods. Specifically, the algorithm was tested on
several examples of routes between one station and another, such
as Apgujeong Station to Seoul Forest Station. As can be seen, it
displays the route that takes the minimum amount of transitions.

Problems 5. Congestion Updates
Traffic situations are subject to change from the moment a path is
determined due to fluctuating congestion on the while traveling. A
traffic accident that occurs may lead to a drastic increase in the time
it takes to get through a road. The path should be continuously
updated based upon the changing values of the edges leading to
unvisited vertices. Input of new weights of the edges can potentially
produce a path different from the current one.

The algorithm will not terminate after it is run at the starting
point; it will continue to perform reruns based upon new inputs
in weights of edges. If there are no modifications made to the
weights, then the path is unchanged. However, if the weight of
an edge is changed, the Dijkstra Algorithm is run again, with the
current vertex as the new starting point and the same destination
as before. Thus, based upon the change in the traffic situations, a
new optimal path will be formed. In order to accomplish this, the
Dijkstra Algorithm itself will be contained inside a “while loop.”

This method presents some limitations to the functionality of the
program. First of all, there is a loss of predictability because it is
impossible to determine when the values of the weights will change.
In addition, since a car cannot turn around in the middle of the
road, if a new path is calculated, it will have to travel to the point it
was initially going towards before a new path can be implemented.

Problems 6. Personalized Path
The users should be able to personalize the path finder. People
prefer certain types of roads over others, such as scenic roads along
the coastline rather than roads that go through alleyways, or travel
by bus rather than transit by subway. The path should be able to
fit itself to the optimalities so that preferred roads are maximized.
Simply put, based on the input of optimal types of roads, optimal
paths should change.

Since it is possible for a path to grow interminably long if it chooses
to prioritize going through optimal types of roads, an upper bound
is set before a path is calculated by running the normal Dijkstra
Algorithm. This shortest path will be multiplied by a factor of 1.25
and set as the upper limit. As a result, paths will be deleted as soon
as their distance goes over more than 25% of the minimal possible
distance.

Within this limitation, types of roads will be “ranked” based upon
the input of the user so that a smaller number indicates a greater
preference. The preference score will be set as a second parameter
that will be minimized during the construction of the path. If it
were the case that bigger scores represented greater preference
and the purpose had been to maximize the preference score,
constructing an algorithm would not nearly be possible because
maximizing distance of a path is an unsolved NP-Hard Problem. [5]

It is important to note that a problem occurs when the method
of adding preference scores is recruited, because it can cause
unpreferred roads to be chosen over preferred roads in some
cases where the unpreferred path actually ends up with a lower
preference score. For example, let’s say road type 1 has a score of 1
and road type 2 has a score of 2. In getting from point A to B, there
is a path that only uses type 1 roads and another that only uses
type 2 roads. However, there are 8 short type 1 roads compared to
just 3 long type 2 roads. Therefore, even if the distance is the same
and the former should obviously be the intended result, the type 2

Figure 4: Seoul subway map [4]

Figure 4: Seoul subway map [4]

5

roads are chosen because they have a combined score of 6, which is
lower than the score of 8.

In response to this issue, a solution is to multiply the distance by
the preference score. As a result, there is a weight that is added
to the score themselves. Longer distances will cover for the fact
that less roads need to be taken. For the depicted example, the
type 2 roads will now have a score is much higher, because each
of the roads are longer.As a result of the algorithm, the user will
be presented with several options that fit the upper limit and
maximize preferred roads.

Using for-loop and priority queue variations of the Dijkstra
Algorithm, as well as manipulating the density of the graph through
numerous examples, I was able to inspect the most efficient
combination of methods for each case. As predicted through
theoretical calculations of time complexity, it was discovered that
the denser the graph, the more efficient a for-loop method was;
vice versa, the sparser the graph, the more efficient a priority queue
method was.

In addition, I modified the Dijkstra’s Algorithm to create an
algorithm that fits the needs of each path problem. Using such
algorithms, I was able to confirm full functionality for each example.

Finally, if I had the chance, I think it would be very interesting to
delve deeper into the real-time updates pertinent to problem 5. As
of now, every time an update is needed, the Dijkstra’s Algorithm is
rerun. It would be a noteworthy accomplishment to discover a way
to decrease the time complexity and I anticipate that such a method
could be applied in many other problems.

5.1. adjacency list + for loop
from heapq import *

INF = 10**10
vertexNum, edgeNum = input().split()
vertexNum, edgeNum = int(vertexNum), int(edgeNum)

Input

[1] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.;
Stein, Clifford (2001), Introduction To Algorithms (2nd ed.), MIT
Press, p. 599-602

[2] Graph representation, CS Academy
URL https://csacademy.com/lesson/graph_representation/

[3] Seoul Metro Subway map data of.
URL https://data.seoul.go.kr/dataList/OA-15442/S/1
datasetView.do

[4] Seoul Subway Map
URL http://seoulsublet.com/subway-metro-map/

[5] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.;
Stein, Clifford (2001), Introduction To Algorithms (2nd ed.), MIT
Press, p. 978

4. CONCLUSION

5. REFERENCES

6. APPENDIX

adjacency list:
vertex id should be an integer between 1 ~ V
###
adj = [[] for _ in range(vertexNum+1)]
for i in range(edgeNum):
 a, b, w = [int(i) for i in input().split()]

 adj[a].append((b, w))
 adj[b].append((a, w))

startVertex = int(input())

Dijkstra’s algorithm
Using adjacency list + for loop
###

dist = [INF] * (vertexNum+1)
visited = [False] * (vertexNum+1)

dist[startVertex] = 0

while True:
 curDist = INF

 for v in range(vertexNum):
 if not visited[v] and dist[v] < curDist:
 cur = v
 curDist = dist[v]

 if curDist == INF:
 break

 visited[cur] = True
 for nxt, w in adj[cur]:
 nxtDist = curDist + w
 if nxtDist < dist[nxt]:
 dist[nxt] = nxtDist

5.2. adjacency list + priority queue
from heapq import *

INF = 10**10
vertexNum, edgeNum = input().split()
vertexNum, edgeNum = int(vertexNum), int(edgeNum)

Input
adjacency list:
vertex id should be an integer between 1 ~ V
###
adj = [[] for _ in range(vertexNum+1)]
for i in range(edgeNum):
 a, b, w = [int(i) for i in input().split()]

 adj[a].append((b, w))
 adj[b].append((a, w))

startVertex = int(input())

Dijkstra’s algorithm
Using priority queue + adjacency list
###

6

dist = [INF] * (vertexNum+1)
pq = []

dist[startVertex] = 0
heappush(pq, (0, startVertex))

while pq:
 curDist, cur = heappop(pq)

 if curDist > dist[cur]:
 continue

 for nxt, w in adj[cur]:
 nxtDist = curDist + w
 if nxtDist < dist[nxt]:
 dist[nxt] = nxtDist
 heappush(pq, (nxtDist, nxt))

5.3. adjacency matrix + for loop
from heapq import *

INF = 10**10
vertexNum, edgeNum = input().split()
vertexNum, edgeNum = int(vertexNum), int(edgeNum)

Input
adjacency matrix:
vertex id should be an integer between 1 ~ V
###
adj = [[INF]*(vertexNum+1) for _ in range(vertexNum+1)]
for i in range(edgeNum):
 a, b, w = [int(i) for i in input().split()]

 adj[a][b] = adj[b][a] = w

startVertex = int(input())

Dijkstra’s algorithm
Using adjacency matrix + for loop
###

dist = [INF] * (vertexNum+1)
visited = [False] * (vertexNum+1)

dist[startVertex] = 0

while True:
 curDist = INF

 for v in range(vertexNum):
 if not visited[v] and dist[v] < curDist:
 cur = v
 curDist = dist[v]

 if curDist == INF:
 break

 visited[cur] = True
 for nxt in range(1, vertexNum+1):
 w = adj[cur][nxt]
 nxtDist = curDist + w

 if nxtDist < dist[nxt]:
 dist[nxt] = nxtDist

5.4. adjacency matrix + priority queue
from heapq import *

INF = 10**10
vertexNum, edgeNum = input().split()
vertexNum, edgeNum = int(vertexNum), int(edgeNum)

Input
adjacency matrix:
vertex id should be an integer between 1 ~ V
###
adj = [[INF]*(vertexNum+1) for _ in range(vertexNum+1)]
for i in range(edgeNum):
 a, b, w = [int(i) for i in input().split()]

 adj[a][b] = adj[b][a] = w

startVertex = int(input())

Dijkstra’s algorithm
Using priority queue + adjacency matrix
###

dist = [INF] * (vertexNum+1)
pq = []

dist[startVertex] = 0
heappush(pq, (0, startVertex))

while pq:
 curDist, cur = heappop(pq)

 if curDist > dist[cur]:
 continue

 for nxt in range(1, vertexNum+1):
 w = adj[cur][nxt]
 nxtDist = curDist + w
 if nxtDist < dist[nxt]:
 dist[nxt] = nxtDist
 heappush(pq, (nxtDist, nxt))

