
1

INTRODUCTION

Recently we see increasing interest in artificial neural networks 

(ANN’s). They are successfully applied to the different fields 

of human activity – business, medicine. ANN’s can be used in 

situations where we have some relation between the predictors 

(inputs) and predicted variables (outputs) even if this relation has 

a complex nature [1]. They are able to reproduce sophisticated 

dependence after training according to the special algorithm using 

a representative sample [2].

In this article we will try to simulate neural networks with help of 

MATLAB Neural Network Toolbox [3] to solve one special problem 

of pattern recognition.

ARTIFICIAL NEURAL NETWORK OVERVIEW

Initial model of artificial neuron was based on computational 

representation as a binary threshold unit [4].

Figure 1. Model of a neuron

This mathematical neuron computes a weighted sum of its n input 

signals, xj (j=1, ...,n) and generates an output of 1 if this sum is above 

a certain threshold u (see fig.1). Otherwise, an output of 0 results. 

Algebraically,

where θ(∙) is unit step function at 0 and wj is the synapse weight 

associated with the j-th input. For simplicity of notation we often 

consider the threshold u as another weight w0=-u attached to the 

neuron with a constant input x0=1. Positive weights correspond 

to excitatory synapses, while negative weights model inhibitory 

ones. It is known, that suitably chosen weights let a synchronous 

arrangement of such neurons perform universal computations. 

There is a crude analogy here to a biological neuron: wires and 

interconnections model axons and dendrites, connection weights 

represent synapses, and the threshold function approximates the 

activity in a soma. Discussed model, however, contains a number 

of simplifying assumptions that do not reflect the true behavior of 

biological neurons.

The McCulloch-Pitts neuron, depicted on fig.1, has been generalized 

in many ways. An obvious one is to use activation functions other 

than the threshold function, such as piecewise linear, sigmoid, or 

Gaussian [5]. The sigmoid function is the most frequently used in 

artificial neural networks. It is a strictly increasing function that 

exhibits smoothness and has the desired asymptotic properties. 

The standard sigmoid function is the logistic function, defined by 

g(x)=1/(1+e^(-βx) ) where β is the slope parameter.

NETWORK ARCHITECTURES

ANN’s can be viewed as weighted directed graphs in which 

artificial neurons are nodes and directed edges (with weights) are 

connections between neuron outputs and neuron inputs.

Based on the connection pattern (architecture), ANN’s can be 

grouped into two categories

• feed-forward networks, in which graphs have no loops;

• recurrent (or feedback) networks, in which loops occur because 

Applying Neural Networks Method to Define the Attractiveness  

ABSTRACT

The author describes a Neural Net method and its application for finding the binary attractiveness of a hotel’s room 

price. It is assumed that we have a history of the observed hotel’s room prices and today’s hotel’s room price. The 

algorithm based on the Neural Net method is realized in the MATLAB package.

of the Price of a Hotel Room 
Joshua Beelis

Brookfield High School (CT, USA)



2

of feedback connections.

In the most common family of feed-forward networks, called 

multilayer perceptron, neurons are organized into layers that have 

unidirectional connections between them (see fig.2).

Figure 2. Scheme of two-layer perceptron

Generally speaking, feed-forward networks are static, that 
is, they produce only one set of output values rather than a 
sequence of values from a given input.

LEARNING

The ability to learn is a fundamental trait of intelligence. Although 

a precise definition of learning is difficult to formulate, a learning 

process in the ANN context can be viewed as the problem of 

updating network architecture and connection weights so that a 

network can efficiently perform a specific task. The network usually 

must learn the connection weights from available training patterns.

Performance is improved over time by iteratively updating 
the weights in the network. ANNs’ ability to automatically 
learn from examples makes them attractive and exciting. 
Instead of following a set of rules specified by human experts, 
ANNs appear to learn underlying rules (like input-output 
relationships) from the given collection of representative 
examples. This is one of the major advantages of neural 
networks over traditional expert systems.

To understand or design a learning process, you need to:

1. Have a model of the environment in which a neural network 

operates, that is, you must to know what information is 

available to the network.

2. Realize, how network weights are updated, that is, which 

learning rules govern the updating process.

A learning algorithm refers to a procedure in which learning rules are 

used for adjusting the weights.

ATTRACTIVENESS OF THE HOTEL’S ROOM 
PRICE

It is well-known that prices of the hotel’s room (HR-price) in 

cities - touristic centers behave like shares on the stock market (see 

example on fig. 3).

Figure 3. Dynamics of HR-price’s changes for the quarter.

The specific is that one can book a hotel room for the year 
ahead, so we have a deal with the future prices (like futures), 
but they are not the subject of speculation and could not be 
traded. The consumer wants to book a hotel room in the city 
C on a particular date D, having a fixed amount of money M 
(date of booking   B is less than D). It is known, that several 
hotels (H1, H2, ..., Hn) offer their rooms with the prices Pi≤M on 
the date D. What is the best choice for the consumer? In other 
words, which hotel gives a fair price on the date D?

To answer the question we need to define market price A - 
average price of hotel’s room in the city - and know history 
of HR-price’s observations. The idea is to compare HR-price 
Pi with the market price A by the special formula, which 
computes attractiveness index AIj for hotels Hj on the date D:

                 (1)

Here P B
j is HR-price of the hotel Hj on the date D, obtained at 

the date B; P H
j  is HR-price of the hotel Hj on the same date 

D, obtained as an average over a row of the previous obser-
vations (cf. [6]). Further, AB is an average of the HR-prices P 

B
j  (obtained at the date B) of all N hotels in city C on the date 

D and AH is an average of the HR-prices P H
j for all K previous 

observations.

If AIk>0 then we say that HR-price of the hotel Hk is attractive 
(this hotel lowered HR-price with respect

to the average market price).

Let us remark, that real data with HR-price observations has 



3

omissions, so computing of attractiveness index should be preceded 

by a special imputation procedure [7].

Applying –Neural Networks Method to Define HR-price 
Attractiveness

MATLAB package has the most suitable realization of the 
method [2]. First we need to prepare our data to be used and 
processed in MATLAB (see fig.4). In this table we have the 
data, referring to the Hotels 1-4 and including 234 observa-
tions. Namely, columns titled Hotel #j avg concerns HR-prices 
P j, while lines titled Hotel #j checkin concerns HR-prices P j 

for half-year observation. Lines, named City avg and City avg 
checkin concerns averages prices AH and AB respectively for 
the same period. Binary Attractive Index (BAIj) for the Hj was 
defined by the following way:

                            (2)

The main idea is to create and to train a neural network, which 

will be able to define BAI without formulas (2)-(3), using only the 

pattern.

Let us turn to MATLAB workspace (see fig. 5). First line 
corresponds to loading file with prepared data and saving it as 
array M (the original data was stored in a file named Hotels_
NN_t.xls).

Next step – selection some blocks of M, including 4 rows as 

inputs (e.g., columns B-E on fig.4) and unit rows of M, followed 

after mentioned blocks, as a targets (e.g. column F on fig.4). 

Corresponding MATLAB commands one can see on the fig.6.

To use matrix variable MI and binary vector variable M5 for neural 

network model we should transposed them by the following 

command:

x = MI’;t = M5’;

Figure 4. Fragment of prepared data

Figure 5. First fragment of MATLAB code



4

Figure 6. Second fragment of MATLAB code

The next step before training a network is creation the 
network object. The function feedforwardnet generates a 

two-layer network with 10 neurons in the hidden layer. It can 

be realized as 

net = feedforwardnet;

During the configuration step, the number of neurons in the output 

layer is set to one, which is the number

of elements in each vector of targets:

net = configure(net,x,t);

The configure command also initializes the weights and biases of 

the network; therefore the network is now ready for training.

Also we need to choose input and output pre/post-processing 

functions. Our choice is removing matrix rows with constant 
values and map matrix row means and deviations to standard 
values:

net.input.processFcns = {‘removeconstantrows’,’mapminmax’}; 

net.output.processFcns = {‘removeconstantrows’,’mapminmax’};

The next step is setup division of data for training, validation and 

testing:

net.divideFcn = ‘dividerand’; % Divide data randomly 

net.divideMode = ‘sample’; % Divide up every sample 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100;

Here a dataset is prepared for dividing into three parts - 70% for 

designing network, 15% for testing and 15% for validating it.

We are not far from the training of our net. It is necessary to choose 

training and performance functions now:

net.trainFcn = ‘trainbfg’; % quasi-Newton back propagation 

training function 

net.performFcn = ‘mse’; % Mean squared error performance 

function

Also we need to choose plot function to represent results of the 

net training:

net.plotFcns = {‘plotperform’};

Let us start to train our network:

[net,tr] = train(net,x,t);

For testing the network one can use the next (standard) block of 

commands

y = net(x);

e = gsubtract(t,y); 

tind = vec2ind(t); 

yind = vec2ind(y);

percentErrors = sum(tind ~= yind)/numel(tind); 

performance = perform(net,t,y)



5

If we you run the script, you can see the next windows (fig.7).

Figure 7. Results of network training

This figure shows the confusion matrices for training, testing, and 

validation, and the three kinds of data combined. The network 

outputs are very accurate, as you can see by the high numbers of 

correct responses in the green squares and the low numbers of 

incorrect responses in the red squares. The lower right blue squares 

illustrate the overall accuracies.

As we satisfied with the network performance, one can turn to 

calculate the network response to another input. Let us check the 

result of BAI prediction for Hotel 3:

MI3=M(:,11:14);x3=MI3’;a=net(x3)

The implementation of this line will create a new vector 
variable a, containing 234 numbers, which should be close to 

0 or 1 (fig.8).

Figure 8. Results of network using (fragment)

To see the difference between the real and predicted values let us copy transposed line a into MS Excel sheet 
and apply function ROUND (fig.9).

Figure 9. Checking the quality of prediction (fragment)

If we continue to compare real BAI with predicted one, we can 
be sure that there is only one mistake (date 4). So, it is high 
quality algorithm, predicting error is less than 0.5%!

CONCLUSION

Neural Network method provides very effective rules for calculation 

of the hotel’s room price binary attractiveness. The result was 

obtained for two-layer network with 10 neurons in the hidden layer 

by selection of pre/post-processing functions as

1. removing matrix rows with constant values;

2. map matrix row means and deviations to standard values.

Significant features of the network creation are also choice quasi-
Newton back propagation function as a training function and 

Mean squared error function as a performance one.

REFERENCES
1. Activation Function. (n.d.). Retrieved from http://en.wikipedia.org/

wiki/Activation/function

2. Artificial Neural Network. (n.d.). Retrieved from http://en.wikipedia.
org/wiki/Artificial_neural_network

3. Bogatov, E., & Bogatov, V. (2013). On the definition of attractive 
prices degree for hotel rooms. Bulletin of Belgorod University of 
Economics, and Law of Cooperatives, 45, 251-255.

4. Buuren, V. (2012). Flexible imputation of missing data. CRC Press, 342.

5. Create, Train, and Simulate Neural Networks. (n.d.). Retrieved from 
Neural Network Toolbox: http://www.mathworks.com/products/
neural-network/

6. Jain, A., Mao, J., & Mohiudden, K. (1996). Artificial Neural 
Networks: A tutorial. 31-44.

7. Stergiou, C., & Siganos, D. (n.d.). Neural Networks. Retrieved from 
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/re-
port.html


