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ABSTRACT

without putting a larger disc over the smaller one.

Tower of Hanoi is one of the most popular puzzles (see [1]-[2]). It was invented by the French mathematician Eduard
Lucas in 1883. The tower consists of the eight discs, stringed on the one of the three peg s in order to reduce the

size of discs. The problem is to move the entire tower to one of the other peg, bearing in each case only one disc,and

Let us generalize the problem. Consider what would happen
in the case of n discs. Let T,, is a minimum number of re-
arrangements required to move n disks from one peg to an-
other according to the rules of Lucas. Then T; =1, T, = 3.

STATEMENT OF PROBLEM #1

Get the formulae of the T, for arbitrary n.

Henry E. Dudeney proposed to solve this problem for a larger

number of pegs. For the case of a 4-core tower there are
many ways to achieve what we think the shortest number
of moves, but still no way to characterize these solutions.

STATEMENT OF PROBLEM #2

Get the estimate of the number of rearrangements QQ,, and generate

the strategy of discs moving for 4-core tower.

SOLUTION

Experiments with three disks show that the crucial idea is to
transfer two top disks from the first peg to another (intermediate)
peg, according to the rule, provided for the transfer of two disks.
Then it is necessary to transfer third disc onto a free peg and move
two remaining disks over this one due to the same rule, mentioned
above. This consideration gives the key of understanding the

general rule of n disks moving:

1. Move n-1 smaller disks on the any free peg (i.e. we have T,

rearrangements ) ,
2. Shift the largest disc (single shifting )

3. Moving the n-1 smaller disks back to the largest disk (we have

T, . rearrangements additionally)

Thus, n disks can be moved by 2T, _; +1 rearrangements, i.e.
when n > 0,

Tn = ZTn—l +1.
Equality (1) is recursion. It allows us to compute T, for any n.

Let’s solve the recurrence relation. One of the methods consists

of guessing the correct solution, followed by a proof that guess

3+1=7; T4=2 7+1=15.

is correct. One can calculate T3 = 2

Obviously n> 0 we obtain

T,=2"-1

Let’s prove (2) with help of mathematics induction.
1. Relation (2) is true for n=1

2. Let’s suppose that (2) is true for n-1:
To1=2""-1

We'll prove (2) with help of (3).

Actually, T,=2T,-1+1=2 = 2 (2"-1 -1) +1= 2"-2+1= 2"-1.
Therefore, the original Lucas problem requires 25-1 = 255

rearrangements.
Let’s show the solution of the four-disc problem step by step.

We will enumerate disks by numbers and enumerate pegs by the
Latin letters. We will move disks with numbers 1, 2, 3, 4 between
the cores a, b, ¢ and d (initial position: disks are located on the peg
a — 1% disk is green, 24 disk is blue, 3™ disk is yellow, 4™ disk is
red - see Fig.1).

Ist step: Move disc “1” on the peg b. (Fig.2)
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2nd step: Move disk “2” on the peg c. (Fig.3) 3rd step: Move disk

“3” on the peg d. (Fig.4)
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Figure 3 Figure 4

4th step: Move disc “1” on the peg c. (Fig.5) 5th step: Move disc “4”

on the peg b. (Fig.6)
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6th step: Move disk “3” on the peg b. (Fig.7) 7th step: Move disc

“1” on the peg a. (Fig.8)

-:‘
d a b ¢ d
n

= L =,
a b c
situation 7 situation 8

Figure 7 Figure 8

8th step: Move disk “2” on the peg b. (Fig.9) 9th step: Move disc

“1” on the peg b. (Fig.10)

a b c d a b - d
situation 9 Resulting situation
Figure 9 Figure 10

Solving this problem requires 9 steps , i.e .Q4 = 9.
Step by step solution of the five-disk problem looks like this:

Ist step: Move disc “1” on the peg b.
2nd step: Move disk “2” on the peg c.
3rd step: Move disk “3” on the peg d.
4th step: Move disk “2” on the peg d.
5th step: Move disc “4” on the peg c.
6th step: Move disc “1” on the peg c.
7th step: Move disk “5” on the peg b.
8th step: Move disc “1” on the peg a.
9th step: Move disc “4” on the peg b.
10th step: Move disk “2” on the peg c.
11th step: Move disk “3” on the peg b.
12th step: Move disk “2” on the peg b.
13th step: Move disc “1” on the peg b.

Solving this problem require 13 steps, i.e.Qs = 13.
One can show that Qg = 17, Q7 = 25, Qg = 33, Qg = 41, Q;0=49.

These results allowed developing strategies for moving n disks. Let

strung discs on a peg a.

1. 1) Move n - 4 upper disk using all four pegs and collect tower

on one of them, such as b (Q,, 4 movements).

1.2) Move the remaining four discs using three pegs a, c and d (peg
b, which gathered upper discs, does not use), and collect them on

one of pegs, such as c. (T, movements).

1.3) Move n - 4 discs from the peg b and collect them on the peg

cusing all  four pegs. (Q4 movements).

Thus, a recurrence relation allows us to estimate the minimum

quantity of moves for 4-core Hanoi tower:

Qus2Qin4+15

The algorithm described above is similar to the Frame-Stewart
algorithm, giving a presumably optimal solution for four pegs [3]. The
last one can also be described recursively, but does not concern

exact estimate of minimum number of discs rearrangements.
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